Explainable artificial intelligence (XAI): Precepts, models, and opportunities for research in construction

被引:36
作者
Love, Peter E. D. [1 ]
Fang, Weili [2 ]
Matthews, Jane [3 ]
Porter, Stuart [1 ]
Luo, Hanbin [4 ]
Ding, Lieyun [4 ]
机构
[1] Curtin Univ, Sch Civil & Mech Engn, GPO Box U1987, Perth, WA 6845, Australia
[2] Tech Univ Berlin, Dept Civil & Bldg Syst, Gustav Meyer Allee 25, D-13156 Berlin, Germany
[3] Deakin Univ, Sch Architecture & Built Environm, Geelong Waterfront Campus, Geelong, Vic 3220, Australia
[4] Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan 430074, Peoples R China
基金
澳大利亚研究理事会;
关键词
Construction; Deep learning; Explainability; Interpretability; Machine learning; XAI; NEURAL-NETWORKS; DATA FUSION; BLACK-BOX; GUIDELINES; FRAMEWORK; SELECTION; PRIVACY; TREES;
D O I
10.1016/j.aei.2023.102024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning (ML) and deep learning (DL) are both branches of AI. As a form of AI, ML automatically adapts to changing datasets with minimal human interference. Deep learning is a subset of ML that uses artificial neural networks to imitate the learning process of the human brain. The 'black box' nature of ML and DL makes their inner workings difficult to understand and interpret. Deploying explainable artificial intelligence (XAI) can help explain why and how the output of ML and DL models are generated. As a result, understanding a model's functioning, behavior, and outputs can be garnered, reducing bias and error and improving confidence in decision-making. Despite providing an improved understanding of model outputs, XAI has received limited attention in construction. This paper presents a narrative review of XAI and a taxonomy of precepts and models to raise awareness about its potential opportunities for use in construction. It is envisaged that the opportunities suggested can stimulate new lines of inquiry to help alleviate the prevailing skepticism and hesitancy toward AI adoption and integration in construction.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Explainable Artificial Intelligence (XAI): A Systematic Literature Review on Taxonomies and Applications in Finance
    Martins, Tiago
    de Almeida, Ana Maria
    Cardoso, Elsa
    Nunes, Luis
    IEEE ACCESS, 2024, 12 : 618 - 629
  • [42] Explainable Artificial Intelligence (XAI) Approaches in Predictive Maintenance: A Review
    Sharma J.
    Mittal M.L.
    Soni G.
    Keprate A.
    Recent Patents on Engineering, 2024, 18 (05) : 18 - 26
  • [43] A Systematic Literature Review on Artificial Intelligence and Explainable Artificial Intelligence for Visual Quality Assurance in Manufacturing
    Hoffmann, Rudolf
    Reich, Christoph
    ELECTRONICS, 2023, 12 (22)
  • [44] Conceptualizing understanding in explainable artificial intelligence (XAI): an abilities-based approach
    Speith, Timo
    Crook, Barnaby
    Mann, Sara
    Schomaecker, Astrid
    Langer, Markus
    ETHICS AND INFORMATION TECHNOLOGY, 2024, 26 (02)
  • [45] Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI)
    Aslam, Nida
    Khan, Irfan Ullah
    Mirza, Samiha
    AlOwayed, Alanoud
    Anis, Fatima M.
    Aljuaid, Reef M.
    Baageel, Reham
    SUSTAINABILITY, 2022, 14 (12)
  • [46] Explainable artificial intelligence (XAI): How to make image analysis deep learning models transparent
    Song, Haekang
    Kim, Sungho
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 1595 - 1598
  • [47] Explainable artificial intelligence: a comprehensive review
    Minh, Dang
    Wang, H. Xiang
    Li, Y. Fen
    Nguyen, Tan N.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (05) : 3503 - 3568
  • [48] Explainable artificial intelligence: an analytical review
    Angelov, Plamen P.
    Soares, Eduardo A.
    Jiang, Richard
    Arnold, Nicholas I.
    Atkinson, Peter M.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (05)
  • [49] Experimental Analysis of Trustworthy In-Vehicle Intrusion Detection System Using eXplainable Artificial Intelligence (XAI)
    Lundberg, Hampus
    Mowla, Nishat, I
    Abedin, Sarder Fakhrul
    Thar, Kyi
    Mahmood, Aamir
    Gidlund, Mikael
    Raza, Shahid
    IEEE ACCESS, 2022, 10 : 102831 - 102841
  • [50] Explainable Artificial Intelligence (XAI) in glaucoma assessment: Advancing the frontiers of machine learning algorithms
    Nimmy, Sonia Farhana
    Hussain, Omar K.
    Chakrabortty, Ripon K.
    Saha, Sajib
    KNOWLEDGE-BASED SYSTEMS, 2025, 316