Explainable artificial intelligence (XAI): Precepts, models, and opportunities for research in construction

被引:36
|
作者
Love, Peter E. D. [1 ]
Fang, Weili [2 ]
Matthews, Jane [3 ]
Porter, Stuart [1 ]
Luo, Hanbin [4 ]
Ding, Lieyun [4 ]
机构
[1] Curtin Univ, Sch Civil & Mech Engn, GPO Box U1987, Perth, WA 6845, Australia
[2] Tech Univ Berlin, Dept Civil & Bldg Syst, Gustav Meyer Allee 25, D-13156 Berlin, Germany
[3] Deakin Univ, Sch Architecture & Built Environm, Geelong Waterfront Campus, Geelong, Vic 3220, Australia
[4] Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan 430074, Peoples R China
基金
澳大利亚研究理事会;
关键词
Construction; Deep learning; Explainability; Interpretability; Machine learning; XAI; NEURAL-NETWORKS; DATA FUSION; BLACK-BOX; GUIDELINES; FRAMEWORK; SELECTION; PRIVACY; TREES;
D O I
10.1016/j.aei.2023.102024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning (ML) and deep learning (DL) are both branches of AI. As a form of AI, ML automatically adapts to changing datasets with minimal human interference. Deep learning is a subset of ML that uses artificial neural networks to imitate the learning process of the human brain. The 'black box' nature of ML and DL makes their inner workings difficult to understand and interpret. Deploying explainable artificial intelligence (XAI) can help explain why and how the output of ML and DL models are generated. As a result, understanding a model's functioning, behavior, and outputs can be garnered, reducing bias and error and improving confidence in decision-making. Despite providing an improved understanding of model outputs, XAI has received limited attention in construction. This paper presents a narrative review of XAI and a taxonomy of precepts and models to raise awareness about its potential opportunities for use in construction. It is envisaged that the opportunities suggested can stimulate new lines of inquiry to help alleviate the prevailing skepticism and hesitancy toward AI adoption and integration in construction.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Special issue on Explainable Artificial Intelligence (XAI)
    Miller, Tim
    Hoffman, Robert
    Amir, Ofra
    Holzinger, Andreas
    ARTIFICIAL INTELLIGENCE, 2022, 307
  • [12] The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
    Andrés Páez
    Minds and Machines, 2019, 29 : 441 - 459
  • [13] Advances in Explainable Artificial Intelligence (xAI) in Finance
    Klein, Tony
    Walther, Thomas
    FINANCE RESEARCH LETTERS, 2024, 70
  • [14] Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities
    Machlev, R.
    Heistrene, L.
    Perl, M.
    Levy, K. Y.
    Belikov, J.
    Mannor, S.
    Levron, Y.
    ENERGY AND AI, 2022, 9
  • [15] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    INFORMATION FUSION, 2020, 58 : 82 - 115
  • [16] Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis
    Ko, Yuna
    Na, Jonggeol
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2023, 61 (04): : 542 - 549
  • [17] Editorial: From Explainable Artificial Intelligence (xAI) to Understandable Artificial Intelligence (uAI)
    Abbass, Hussein
    Crockett, Keeley
    Garibaldi, Jonathan
    Gegov, Alexander
    Kaymak, Uzay
    Sousa, Joao Miguel C.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (09): : 4310 - 4314
  • [18] Explainable Artificial Intelligence (XAI) for Internet of Things: A Survey
    Kok, Ibrahim
    Okay, Feyza Yildirim
    Muyanli, Ozgecan
    Ozdemir, Suat
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (16) : 14764 - 14779
  • [19] Beauty is in the explainable artificial intelligence (XAI) of the "agnostic" beholder
    Laios, Alexandros
    De Jong, Diederick
    Kalampokis, Evangelos
    TRANSLATIONAL CANCER RESEARCH, 2023, 12 (02) : 226 - 229
  • [20] Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare
    Hulsen, Tim
    AI, 2023, 4 (03) : 652 - 666