Construction;
Deep learning;
Explainability;
Interpretability;
Machine learning;
XAI;
NEURAL-NETWORKS;
DATA FUSION;
BLACK-BOX;
GUIDELINES;
FRAMEWORK;
SELECTION;
PRIVACY;
TREES;
D O I:
10.1016/j.aei.2023.102024
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Machine learning (ML) and deep learning (DL) are both branches of AI. As a form of AI, ML automatically adapts to changing datasets with minimal human interference. Deep learning is a subset of ML that uses artificial neural networks to imitate the learning process of the human brain. The 'black box' nature of ML and DL makes their inner workings difficult to understand and interpret. Deploying explainable artificial intelligence (XAI) can help explain why and how the output of ML and DL models are generated. As a result, understanding a model's functioning, behavior, and outputs can be garnered, reducing bias and error and improving confidence in decision-making. Despite providing an improved understanding of model outputs, XAI has received limited attention in construction. This paper presents a narrative review of XAI and a taxonomy of precepts and models to raise awareness about its potential opportunities for use in construction. It is envisaged that the opportunities suggested can stimulate new lines of inquiry to help alleviate the prevailing skepticism and hesitancy toward AI adoption and integration in construction.
机构:
Rutgers Business Sch, Newark, NJ 07102 USA
Southwestern Univ Finance & Econ, Res Inst Econ & Management, Chengdu, Peoples R ChinaRutgers Business Sch, Newark, NJ 07102 USA
Zhang, Chanyuan
Cho, Soohyun
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers Business Sch, Newark, NJ 07102 USARutgers Business Sch, Newark, NJ 07102 USA
Cho, Soohyun
Vasarhelyi, Miklos
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers Business Sch, Newark, NJ 07102 USARutgers Business Sch, Newark, NJ 07102 USA
机构:
DARPA, 675 North Randolph St, Arlington, VA 22201 USA
Facebook AI Res, 770 Broadway, New York, NY 10003 USADARPA, 675 North Randolph St, Arlington, VA 22201 USA
Gunning, David
Stefik, Mark
论文数: 0引用数: 0
h-index: 0
机构:
Palo Alto Res Ctr, 3333 Coyote Hill Rd, Palo Alto, CA 94304 USADARPA, 675 North Randolph St, Arlington, VA 22201 USA
Stefik, Mark
Choi, Jaesik
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Grad Sch Artificial Intelligence, 291 Daehak Ro, Daejeon 34141, South KoreaDARPA, 675 North Randolph St, Arlington, VA 22201 USA
Choi, Jaesik
Miller, Timothy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Sch Comp & Informat Syst, Melbourne, Vic 3010, AustraliaDARPA, 675 North Randolph St, Arlington, VA 22201 USA
Miller, Timothy
Stumpf, Simone
论文数: 0引用数: 0
h-index: 0
机构:
City Univ London, Sch Math Comp Sci & Engn, Ctr HCI Design, London EC1V 0HB, EnglandDARPA, 675 North Randolph St, Arlington, VA 22201 USA
Stumpf, Simone
Yang, Guang-Zhong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai, Peoples R ChinaDARPA, 675 North Randolph St, Arlington, VA 22201 USA