The rotational curvature of plane curves

被引:0
作者
Crasmareanu, Mircea [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2023年 / 31卷 / 02期
关键词
plane curve; angular vector field; rotational curvature;
D O I
10.2478/auom-2023-0019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study a new curvature function for plane curves inspired by the weighted mean curvature of M. Gromov. We call it rotational being the difference between the usual curvature and the inner product of the normal vector field and the angular vector field. But, since the problem of vanishing of this curvature involves complicated expressions we define a second rotational curvature. Both these curvatures are computed for several examples.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 12 条
[1]  
Chou K.-S., 2001, The Curve Shortening Problem
[2]   Golden differential geometry [J].
Crasmareanu, Mircea ;
Hretcanu, Cristina-Elena .
CHAOS SOLITONS & FRACTALS, 2008, 38 (05) :1229-1238
[3]   Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves [J].
Crasmareanu, Mircea ;
Frigioiu, Camelia .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (10)
[4]   Isoperimetry of waists and concentration of maps [J].
Gromov, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) :178-215
[5]  
Laurent Younes, 2019, APPL MATH SCI, V171
[6]   Perturbations, deformations, and variations (and "near-misses") in geometry, physics, and number theory [J].
Mazur, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 41 (03) :307-336
[7]  
Mircea Crasmareanu, 2022, ROM J MATH COMPUT SC, V12, P50
[8]  
Mircea Crasmareanu, 2022, J ADV MATH STUD, V15, P303
[9]  
Radu Miron, 1994, FUNDAMENTAL THEORIES, V59
[10]  
Radu Miron, 1958, GAZ MAT FIZ BUCURE S, V10, P705