Graph neural networks at the Large Hadron Collider

被引:19
作者
DeZoort, Gage [1 ]
Battaglia, Peter W. [2 ]
Biscarat, Catherine [3 ]
Vlimant, Jean-Roch [4 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] DeepMind, London, England
[3] Univ Toulouse, Lab 2 Infinis Toulouse L2IT IN2P3, CNRS, UPS, Toulouse, France
[4] CALTECH, Pasadena, CA USA
基金
欧洲研究理事会;
关键词
NOBEL LECTURE;
D O I
10.1038/s42254-023-00569-0
中图分类号
O59 [应用物理学];
学科分类号
摘要
From raw detector activations to reconstructed particles, data at the Large Hadron Collider (LHC) are sparse, irregular, heterogeneous and highly relational in nature. Graph neural networks (GNNs), a class of algorithms belonging to the rapidly growing field of geometric deep learning (GDL), are well suited to tackling such data because GNNs are equipped with relational inductive biases that explicitly make use of localized information encoded in graphs. Furthermore, graphs offer a flexible and efficient alternative to rectilinear structures when representing sparse or irregular data, and can naturally encode heterogeneous information. For these reasons, GNNs have been applied to a number of LHC physics tasks including reconstructing particles from detector readouts and discriminating physics signals against background processes. We introduce and categorize these applications in a manner accessible to both physicists and non-physicists. Our explicit goal is to bridge the gap between the particle physics and GDL communities. After an accessible description of LHC physics, including theory, measurement, simulation and analysis, we overview applications of GNNs at the LHC. We conclude by highlighting technical challenges and future directions that may inspire further collaboration between the physics and GDL communities. Graph neural networks have been applied to many important physics tasks at the Large Hadron Collider (LHC). This Technical Review categorizes these applications in a manner accessible to experts and non-experts alike by providing detailed descriptions of LHC physics and graph neural network design considerations.
引用
收藏
页码:281 / 303
页数:23
相关论文
共 137 条
  • [41] Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC
    Chatrchyan, S.
    Khachatryan, V.
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Aguilo, E.
    Bergauer, T.
    Dragicevic, M.
    Eroe, J.
    Fabjan, C.
    Friedl, M.
    Fruehwirth, R.
    Ghete, V. M.
    Hammer, J.
    Hoch, M.
    Hoermann, N.
    Hrubec, J.
    Jeitler, M.
    Kiesenhofer, W.
    Knuenz, V.
    Krammer, M.
    Kraetschmer, I.
    Liko, D.
    Majerotto, W.
    Mikulec, I.
    Pernicka, M.
    Rahbaran, B.
    Rohringer, C.
    Rohringer, H.
    Schoefbeck, R.
    Strauss, J.
    Szoncso, F.
    Taurok, A.
    Waltenberger, W.
    Walzel, G.
    Widl, E.
    Wulz, C. -E.
    Chekhovsky, V.
    Emeliantchik, I.
    Litomin, A.
    Makarenko, V.
    Mossolov, V.
    Shumeiko, N.
    Solin, A.
    Stefanovitch, R.
    Gonzalez, J. Suarez
    Fedorov, A.
    Korzhik, M.
    Missevitch, O.
    Zuyeuski, R.
    [J]. PHYSICS LETTERS B, 2012, 716 (01) : 30 - 61
  • [42] The CMS experiment at the CERN LHC
    Chatrchyan, S.
    Hmayakyan, G.
    Khachatryan, V.
    Sirunyan, A. M.
    Adam, W.
    Bauer, T.
    Bergauer, T.
    Bergauer, H.
    Dragicevic, M.
    Eroe, J.
    Friedl, M.
    Fruehwirth, R.
    Ghete, V. M.
    Glaser, P.
    Hartl, C.
    Hoermann, N.
    Hrubec, J.
    Haensel, S.
    Jeitler, M.
    Kastner, K.
    Krammer, M.
    de Abril, I. Magrans
    Markytan, M.
    Mikulec, I.
    Neuherz, B.
    Noebauer, T.
    Oberegger, M.
    Padrta, M.
    Pernicka, M.
    Porth, P.
    Rohringer, H.
    Schmid, S.
    Schreiner, T.
    Stark, R.
    Steininger, H.
    Strauss, J.
    Taurok, A.
    Uhl, D.
    Waltenberger, W.
    Walzel, G.
    Widl, E.
    Wulz, C. -E.
    Petrov, V.
    Prosolovich, V.
    Chekhovsky, V.
    Dvornikov, O.
    Emeliantchik, I.
    Litomin, A.
    Makarenko, V.
    Marfin, I.
    [J]. JOURNAL OF INSTRUMENTATION, 2008, 3
  • [43] GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud
    Chen, Can
    Fragonara, Luca Zanotti
    Tsourdos, Antonios
    [J]. NEUROCOMPUTING, 2021, 438 : 122 - 132
  • [44] CMS Collaboration, 2019, CUT DIAGR CMS DET
  • [45] An overview of the trigger system at the CMS experiment
    Das, Pallabi
    [J]. PHYSICA SCRIPTA, 2022, 97 (05)
  • [46] Jet-images - deep learning edition
    de Oliveira, Luke
    Kagan, Michael
    Mackey, Lester
    Nachman, Benjamin
    Schwartzman, Ariel
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [47] DeZoort G., 2021, COMPUT SOFTW BIG SCI, V5, P26, DOI DOI 10.1007/S41781-021-00073-Z
  • [48] Efficiency Parameterization with Neural Networks
    Di Bello F.A.
    Shlomi J.
    Badiali C.
    Frattari G.
    Gross E.
    Ippolito V.
    Kado M.
    [J]. Computing and Software for Big Science, 2021, 5 (1)
  • [49] Dokshitzer YL., 1997, JHEP, V08, P001, DOI DOI 10.1088/1126-6708/1997/08/001
  • [50] Equivariant energy flow networks for jet tagging
    Dolan, Matthew J.
    Ore, Ayodele
    [J]. PHYSICAL REVIEW D, 2021, 103 (07)