Graph neural networks at the Large Hadron Collider

被引:19
作者
DeZoort, Gage [1 ]
Battaglia, Peter W. [2 ]
Biscarat, Catherine [3 ]
Vlimant, Jean-Roch [4 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] DeepMind, London, England
[3] Univ Toulouse, Lab 2 Infinis Toulouse L2IT IN2P3, CNRS, UPS, Toulouse, France
[4] CALTECH, Pasadena, CA USA
基金
欧洲研究理事会;
关键词
NOBEL LECTURE;
D O I
10.1038/s42254-023-00569-0
中图分类号
O59 [应用物理学];
学科分类号
摘要
From raw detector activations to reconstructed particles, data at the Large Hadron Collider (LHC) are sparse, irregular, heterogeneous and highly relational in nature. Graph neural networks (GNNs), a class of algorithms belonging to the rapidly growing field of geometric deep learning (GDL), are well suited to tackling such data because GNNs are equipped with relational inductive biases that explicitly make use of localized information encoded in graphs. Furthermore, graphs offer a flexible and efficient alternative to rectilinear structures when representing sparse or irregular data, and can naturally encode heterogeneous information. For these reasons, GNNs have been applied to a number of LHC physics tasks including reconstructing particles from detector readouts and discriminating physics signals against background processes. We introduce and categorize these applications in a manner accessible to both physicists and non-physicists. Our explicit goal is to bridge the gap between the particle physics and GDL communities. After an accessible description of LHC physics, including theory, measurement, simulation and analysis, we overview applications of GNNs at the LHC. We conclude by highlighting technical challenges and future directions that may inspire further collaboration between the physics and GDL communities. Graph neural networks have been applied to many important physics tasks at the Large Hadron Collider (LHC). This Technical Review categorizes these applications in a manner accessible to experts and non-experts alike by providing detailed descriptions of LHC physics and graph neural network design considerations.
引用
收藏
页码:281 / 303
页数:23
相关论文
共 137 条
  • [1] Jet reconstruction and performance using particle flow with the ATLAS Detector
    Aaboudd, M.
    Aad, G.
    Abbott, B.
    Abdallah, J.
    Abdinov, O.
    Abeloos, B.
    Abidi, S. H.
    AbouZeid, O. S.
    Abraham, N. L.
    Abramowicz, H.
    Abreu, H.
    Abreu, R.
    Abulaiti, Y.
    Acharya, B. S.
    Adachi, S.
    Adamczyk, L.
    Adelman, J.
    Adersberger, M.
    Adye, T.
    Affolder, A. A.
    Agatonovic-Jovin, T.
    Agheorghiesei, C.
    Aguilar-Saavedra, J. A.
    Ahlen, S. P.
    Ahmadov, F.
    Aielli, G.
    Akatsuka, S.
    Akerstedt, H.
    Akesson, T. P. A.
    Akimov, A. V.
    Alberghi, G. L.
    Albert, J.
    Alconada Verzini, M. J.
    Aleksa, M.
    Aleksandrov, I. N.
    Alexa, C.
    Alexander, G.
    Alexopoulos, T.
    Alhroob, M.
    Ali, B.
    Aliev, M.
    Alimonti, G.
    Alison, J.
    Alkire, S. P.
    Allbrooke, B. M. M.
    Allen, B. W.
    Allport, P. P.
    Aloisio, A.
    Alonso, A.
    Alonso, F.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (07):
  • [2] Operation of the ATLAS trigger system in Run 2
    Aad, G.
    Abbott, B.
    Abbott, D. C.
    Abud, A. Abed
    Abeling, K.
    Abhayasinghe, D. K.
    Abidi, S. H.
    AbouZeid, O. S.
    Abraham, N. L.
    Abramowicz, H.
    Abreu, H.
    Abulaiti, Y.
    Acharya, B. S.
    Achkar, B.
    Adam, L.
    Bourdarios, C. Adam
    Adamczyk, L.
    Adamek, L.
    Adelman, J.
    Adersberger, M.
    Adiguzel, A.
    Adorni, S.
    Adye, T.
    Affolder, A. A.
    Afik, Y.
    Agapopoulou, C.
    Agaras, M. N.
    Aggarwal, A.
    Agheorghiesei, C.
    Aguilar-Saavedra, J. A.
    Ahmad, A.
    Ahmadov, F.
    Ahmed, W. S.
    Ai, X.
    Aielli, G.
    Akatsuka, S.
    Akesson, T. P. A.
    Akilli, E.
    Akimov, A., V
    Al Khoury, K.
    Alberghi, G. L.
    Albert, J.
    Verzini, M. J. Alconada
    Alderweireldt, S.
    Aleksa, M.
    Aleksandrov, I. N.
    Alexa, C.
    Alexopoulos, T.
    Alfonsi, A.
    Alfonsi, F.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (10):
  • [3] Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC
    Aad, G.
    Abajyan, T.
    Abbott, B.
    Abdallah, J.
    Khalek, S. Abdel
    Abdelalim, A. A.
    Abdinov, O.
    Aben, R.
    Abi, B.
    Abolins, M.
    AbouZeid, U. S.
    Abramowicz, H.
    Abreu, H.
    Acharya, B. S.
    Adamczyk, L.
    Adams, D. L.
    Addy, T. N.
    Adelman, J.
    Adomeit, S.
    Adragna, P.
    Adye, T.
    Aefsky, S.
    Aguilar-Saavedra, J. A.
    Agustoni, M.
    Aharrouche, M.
    Ahlen, S. P.
    Ahles, F.
    Ahmad, A.
    Ahsan, M.
    Aielli, G.
    Akdogan, T.
    Akesson, T. P. A.
    Akimoto, G.
    Akimov, A. V.
    Alam, M. S.
    Alam, M. A.
    Albert, J.
    Albrand, S.
    Aleksa, M.
    Aleksandrov, I. N.
    Alessandria, F.
    Alexa, C.
    Alexander, G.
    Alexandre, G.
    Alexopoulos, T.
    Alhroob, M.
    Aliev, M.
    Alimonti, G.
    Alison, J.
    Allbrooke, B. M. M.
    [J]. PHYSICS LETTERS B, 2012, 716 (01) : 1 - 29
  • [4] Aad G, 2008, JOURNAL OF INSTRUMENTATION, V3, DOI [DOI 10.1088/1748-0221/3/08/S08003, 10.1088/1748-0221/3/08/ S08003]
  • [5] The ALICE experiment at the CERN LHC
    Aamodt, K.
    Quintana, A. Abrahantes
    Achenbach, R.
    Acounis, S.
    Adamova, D.
    Adler, C.
    Aggarwal, M.
    Agnese, F.
    Rinella, G. Aglieri
    Ahammed, Z.
    Ahmad, A.
    Ahmad, N.
    Ahmad, S.
    Akindinov, A.
    Akishin, P.
    Aleksandrov, D.
    Alessandro, B.
    Alfaro, R.
    Alfarone, G.
    Alici, A.
    Alme, J.
    Alt, T.
    Altinpinar, S.
    Amend, W.
    Andrei, C.
    Andres, Y.
    Andronic, A.
    Anelli, G.
    Anfreville, M.
    Angelov, V.
    Anzo, A.
    Anson, C.
    Anticic, T.
    Antonenko, V.
    Antonczyk, D.
    Antinori, F.
    Antinori, S.
    Antonioli, P.
    Aphecetche, L.
    Appelshaeuser, H.
    Aprodu, V.
    Arba, M.
    Arcelli, S.
    Argentieri, A.
    Armesto, N.
    Arnaldi, R.
    Arefiev, A.
    Arsene, I.
    Asryan, A.
    Augustinus, A.
    [J]. JOURNAL OF INSTRUMENTATION, 2008, 3
  • [6] Probing the triple Higgs boson coupling with machine learning at the LHC
    Abdughani, Murat
    Wang, Daohan
    Wu, Lei
    Yang, Jin Min
    Zhao, Jun
    [J]. PHYSICAL REVIEW D, 2021, 104 (05)
  • [7] Probing stop pair production at the LHC with graph neural networks
    Abdughani, Murat
    Ren, Jie
    Wu, Lei
    Yang, Jin Min
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [8] Albertsson K., 2020, CONN DOTS WORKSH 202, DOI [10.5281/zenodo.4088500, DOI 10.5281/ZENODO.4088500]
  • [9] A Roadmap for HEP Software and Computing R&D for the 2020s
    Albrecht J.
    Alves A.A., Jr.
    Amadio G.
    Andronico G.
    Anh-Ky N.
    Aphecetche L.
    Apostolakis J.
    Asai M.
    Atzori L.
    Babik M.
    Bagliesi G.
    Bandieramonte M.
    Banerjee S.
    Barisits M.
    Bauerdick L.A.T.
    Belforte S.
    Benjamin D.
    Bernius C.
    Bhimji W.
    Bianchi R.M.
    Bird I.
    Biscarat C.
    Blomer J.
    Bloom K.
    Boccali T.
    Bockelman B.
    Bold T.
    Bonacorsi D.
    Boveia A.
    Bozzi C.
    Bracko M.
    Britton D.
    Buckley A.
    Buncic P.
    Calafiura P.
    Campana S.
    Canal P.
    Canali L.
    Carlino G.
    Castro N.
    Cattaneo M.
    Cerminara G.
    Cervantes Villanueva J.
    Chang P.
    Chapman J.
    Chen G.
    Childers T.
    Clarke P.
    Clemencic M.
    Cogneras E.
    [J]. Computing and Software for Big Science, 2019, 3 (1)
  • [10] AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION
    ALTMAN, NS
    [J]. AMERICAN STATISTICIAN, 1992, 46 (03) : 175 - 185