Functional brain networks reflect spatial and temporal autocorrelation

被引:22
|
作者
Shinn, Maxwell [1 ,2 ]
Hu, Amber [3 ]
Turner, Laurel [3 ]
Noble, Stephanie [4 ]
Preller, Katrin H. [2 ,5 ]
Ji, Jie Lisa [2 ]
Moujaes, Flora [5 ]
Achard, Sophie [6 ]
Scheinost, Dustin [1 ,4 ]
Constable, R. Todd [1 ,4 ]
Krystal, John H. [2 ]
Vollenweider, Franz X. [5 ]
Lee, Daeyeol [7 ,8 ,9 ,10 ]
Anticevic, Alan [1 ,2 ]
Bullmore, Edward T. [11 ]
Murray, John D. [1 ,2 ,12 ]
机构
[1] Yale Univ, Interdept Neurosci Program, New Haven, CT 06520 USA
[2] Yale Univ, Dept Psychiat, New Haven, CT 06511 USA
[3] Yale Univ, Yale Coll, New Haven, CT USA
[4] Yale Univ, Dept Radiol & Biomed Imaging, New Haven, CT USA
[5] Univ Hosp Psychiat, Dept Psychiat Psychotherapy & Psychosomat, Zurich, Switzerland
[6] Univ Grenoble Alpes, CNRS, Inria, Grenoble INP,LJK, Grenoble, France
[7] Johns Hopkins Univ, Zanvyl Krieger Mind Brain Inst, Baltimore, MD USA
[8] Johns Hopkins Univ, Kavli Discovery Neurosci Inst, Baltimore, MD USA
[9] Johns Hopkins Univ, Dept Psychol & Brain Sci, Baltimore, MD USA
[10] Johns Hopkins Univ, Dept Neurosci, Baltimore, MD USA
[11] Univ Cambridge, Dept Psychiat, Cambridge, England
[12] Yale Univ, Dept Phys, New Haven, CT 06511 USA
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会; 瑞士国家科学基金会;
关键词
TIME-SERIES; BOLD SIGNAL; FMRI DATA; CONNECTIVITY; PARCELLATION; RELIABILITY; DYNAMICS; NOISE; MRI; VARIABILITY;
D O I
10.1038/s41593-023-01299-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
High-throughput experimental methods in neuroscience have led to an explosion of techniques for measuring complex interactions and multi-dimensional patterns. However, whether sophisticated measures of emergent phenomena can be traced back to simpler, low-dimensional statistics is largely unknown. To explore this question, we examined resting-state functional magnetic resonance imaging (rs-fMRI) data using complex topology measures from network neuroscience. Here we show that spatial and temporal autocorrelation are reliable statistics that explain numerous measures of network topology. Surrogate time series with subject-matched spatial and temporal autocorrelation capture nearly all reliable individual and regional variation in these topology measures. Network topology changes during aging are driven by spatial autocorrelation, and multiple serotonergic drugs causally induce the same topographic change in temporal autocorrelation. This reductionistic interpretation of widely used complexity measures may help link them to neurobiology. Individual variation in fMRI-derived brain networks is reproduced in a model using only the smoothness (autocorrelation) of the fMRI time series. Smoothness has implication for aging and can be causally manipulated by psychedelic serotonergic drugs.
引用
收藏
页码:867 / 878
页数:36
相关论文
共 50 条
  • [21] Autocorrelation properties of temporal networks governed by dynamic node variables
    Hartle, Harrison
    Masuda, Naoki
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [22] Estimating sparse functional brain networks with spatial constraints for MCI identification
    Xue, Yanfang
    Zhang, Limei
    Qiao, Lishan
    Shen, Dinggang
    PLOS ONE, 2020, 15 (07):
  • [23] DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks
    Thapaliya, Bishal
    Miller, Robyn
    Chen, Jiayu
    Wang, Yu Ping
    Akbas, Esra
    Sapkota, Ram
    Ray, Bhaskar
    Suresh, Pranav
    Ghimire, Santosh
    Calhoun, Vince D.
    Liu, Jingyu
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [24] Temporal and spatial variability of large-scale dynamic brain networks in ASD
    Yin, Shunjie
    Sun, Shan
    Li, Jia
    Feng, Yu
    Zheng, Liqin
    Chen, Kai
    Ma, Jiwang
    Xu, Fen
    Yao, Dezhong
    Xu, Peng
    Liang, X. San
    Zhang, Tao
    EUROPEAN CHILD & ADOLESCENT PSYCHIATRY, 2025,
  • [25] Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation
    Gumpertz, ML
    Wu, C
    Pye, JM
    FOREST SCIENCE, 2000, 46 (01) : 95 - 107
  • [26] Maximal autocorrelation factors for function-valued spatial/temporal data
    Hooker, G.
    Roberts, S.
    Shang, H. L.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 159 - 165
  • [27] Spatial brain networks
    Bassett, Danielle S.
    Stiso, Jennifer
    COMPTES RENDUS PHYSIQUE, 2018, 19 (04) : 253 - 264
  • [28] Spatio-temporal Evolution of Groundwater Vulnerability Based on Spatial Autocorrelation
    Liu Y.
    Lan S.-S.
    Zhang Y.-X.
    Li F.-C.
    Hou S.-K.
    Huanjing Kexue/Environmental Science, 2017, 38 (10): : 4236 - 4244
  • [29] EFFECTS OF AUTOCORRELATION AND TEMPORAL SAMPLING SCHEMES ON ESTIMATES OF TREND AND SPATIAL CORRELATION
    TIAO, GC
    REINSEL, GC
    XU, DM
    PEDRICK, JH
    ZHU, XD
    MILLER, AJ
    DELUISI, JJ
    MATEER, CL
    WUEBBLES, DJ
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D12) : 20507 - 20517
  • [30] SPATIAL AUTOCORRELATION
    GETIS, A
    PROGRESS IN HUMAN GEOGRAPHY, 1995, 19 (02) : 245 - 247