Ill-posedness for a two-component Novikov system in Besov space

被引:1
|
作者
Wu, Xing [1 ]
Li, Min [2 ]
机构
[1] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Jiangxi, Peoples R China
关键词
Two-component Novikov system; Ill-posedness; Besov spaces; CAMASSA-HOLM; WELL-POSEDNESS; CAUCHY-PROBLEM; EQUATIONS;
D O I
10.1016/j.jmaa.2023.127171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for a two-component Novikov system on the line. By specially constructed initial data (rho 0, u0) in Bs-1 p,infinity(R) x Bsp,infinity(R) with s >max{2 + p1,52 } and 1 < p< oo, we show that any energy bounded solution starting from (rho 0, u0) does not converge back to (rho 0, u0) in the metric of Bs-1 p,infinity(R) x Bsp,infinity(R) as time goes to zero, thus results in discontinuity of the data-to-solution map and ill-posedness.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces
    Xiang Fei
    Yanghai Yu
    Mingwen Fei
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [32] On the Cauchy problem and peakons of a two-component Novikov system
    Qu, Changzheng
    Fu, Ying
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (10) : 1965 - 1996
  • [33] A note on the Cauchy problem for the two-component Novikov system
    Wang, Haiquan
    Chong, Gezi
    Wu, Lili
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1809 - 1843
  • [34] ILL-posedness for the Benney system
    Corcho, AJ
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (03) : 965 - 972
  • [35] Analytic study of solutions for a two-component Novikov system
    Gao, Hui
    Wang, Gangwei
    MODERN PHYSICS LETTERS B, 2021, 35 (01):
  • [36] On the Cauchy problem and peakons of a two-component Novikov system
    Changzheng Qu
    Ying Fu
    Science China Mathematics, 2020, 63 : 1965 - 1996
  • [37] On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces
    Chen, Qionglei
    Miao, Changxing
    Zhang, Zhifei
    REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (04) : 1375 - 1402
  • [38] Ill-posedness for a generalized Camassa-Holm equation with higher-order nonlinearity in the critical Besov space
    Deng, Wei
    Li, Min
    Wu, Xing
    Zhu, Weipeng
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (04): : 843 - 857
  • [39] Ill-posedness for a system of quadratic nonlinear Schrodinger equations in two dimensions
    Iwabuchi, Tsukasa
    Ogawa, Takayoshi
    Uriya, Kota
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) : 136 - 163
  • [40] Well-posedness and ill-posedness of the stationary Navier-Stokes equations in toroidal Besov spaces
    Tsurumi, Hiroyuki
    NONLINEARITY, 2019, 32 (10) : 3798 - 3819