Prediction of algal blooms via data-driven machine learning models: anevaluation using data from a well-monitored mesotrophic lake

被引:17
作者
Lin, Shuqi [1 ,2 ,4 ]
Pierson, Donald C. [1 ,2 ]
Mesman, Jorrit P. [1 ,2 ,3 ]
机构
[1] Uppsala Univ, Erken Lab, Uppsala, Sweden
[2] Uppsala Univ, Limnol Dept, Uppsala, Sweden
[3] Univ Geneva, Dept FA Forel Sci lenvironnement & eau, Geneva, Switzerland
[4] Canada Ctr Inland Waters, Environm & Climate Change Canada, Burlington, ON L7R 4A6, Canada
关键词
CYANOBACTERIAL BLOOMS; SPRING PHYTOPLANKTON; CLIMATE; ERKEN;
D O I
10.5194/gmd-16-35-2023
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
With increasing lake monitoring data, data-driven machinelearning (ML) models might be able to capture the complex algal bloomdynamics that cannot be completely described in process-based (PB) models.We applied two ML models, the gradient boost regressor (GBR) and long short-termmemory (LSTM) network, to predict algal blooms and seasonal changes in algalchlorophyll concentrations (Chl) in a mesotrophic lake. Three predictiveworkflows were tested, one based solely on available measurements and theothers applying a two-step approach, first estimating lake nutrients thathave limited observations and then predicting Chl using observed andpre-generated environmental factors. The third workflow was developedusing hydrodynamic data derived from a PB model as additional trainingfeatures in the two-step ML approach. The performance of the ML models wassuperior to a PB model in predicting nutrients and Chl. The hybrid modelfurther improved the prediction of the timing and magnitude of algal blooms.A data sparsity test based on shuffling the order of training and testingyears showed the accuracy of ML models decreased with increasing sampleinterval, and model performance varied with training-testing yearcombinations.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 48 条
[21]   Factors regulating recruitment from the sediment to the water column in the bloom-forming cyanobacterium Gloeotrichia echinulata [J].
Karlsson-Elfgren, I ;
Rengefors, K ;
Gustafsson, S .
FRESHWATER BIOLOGY, 2004, 49 (03) :265-273
[22]  
Lin S., 2022, ZENODO CODE DATA SET, DOI [10.5281/zenodo.7149563, DOI 10.5281/ZENODO.7149563]
[23]   Automatic High Frequency Monitoring for Improved Lake and Reservoir Management [J].
Marce, Rafael ;
George, Glen ;
Buscarinu, Paola ;
Deidda, Melania ;
Dunalska, Julita ;
de Eyto, Elvira ;
Flaim, Giovanna ;
Grossart, Hans-Peter ;
Istvanovics, Vera ;
Lenhardt, Mirjana ;
Moreno-Ostos, Enrique ;
Obrador, Biel ;
Ostrovsky, Ilia ;
Pierson, Donald C. ;
Potuzak, Jan ;
Poikane, Sandra ;
Rinke, Karsten ;
Rodriguez-Mozaz, Sara ;
Staehr, Peter A. ;
Sumberova, Katerina ;
Waajen, Guido ;
Weyhenmeyer, Gesa A. ;
Weathers, Kathleen C. ;
Zion, Mark ;
Ibelings, Bas W. ;
Jennings, Eleanor .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (20) :10780-10794
[24]   Interrater reliability: the kappa statistic [J].
McHugh, Mary L. .
BIOCHEMIA MEDICA, 2012, 22 (03) :276-282
[25]   Machine Learning Approaches for Predicting Health Risk of Cyanobacterial Blooms in Northern European Lakes [J].
Mellios, Nikolaos ;
Moe, S. Jannicke ;
Laspidou, Chrysi .
WATER, 2020, 12 (04)
[26]   Drivers of phytoplankton responses to summer wind events in a stratified lake: A modeling study [J].
Mesman, Jorrit P. ;
Ayala, Ana, I ;
Goyette, Stephane ;
Kasparian, Jerome ;
Marce, Rafael ;
Markensten, Hampus ;
Stelzer, Julio A. A. ;
Thayne, Michael W. ;
Thomas, Mridul K. ;
Pierson, Don C. ;
Ibelings, Bas W. .
LIMNOLOGY AND OCEANOGRAPHY, 2022, 67 (04) :856-873
[27]   Historical modelling of changes in Lake Erken thermal conditions [J].
Moras, Simone ;
Ayala, Ana, I ;
Pierson, Don C. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2019, 23 (12) :5001-5016
[28]   Revealing Biotic and Abiotic Controls of Harmful Algal Blooms in a Shallow Subtropical Lake through Statistical Machine Learning [J].
Nelson, Natalie G. ;
Munoz-Carpena, Rafael ;
Phlips, Edward J. ;
Kaplan, David ;
Sucsy, Peter ;
Hendrickson, John .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (06) :3527-3535
[29]   Climate - Blooms like it hot [J].
Paerl, Hans W. ;
Huisman, Jef .
SCIENCE, 2008, 320 (5872) :57-58
[30]   NUISANCE PHYTOPLANKTON BLOOMS IN COASTAL, ESTUARINE, AND INLAND WATERS [J].
PAERL, HW .
LIMNOLOGY AND OCEANOGRAPHY, 1988, 33 (04) :823-847