On the density of a set of primes associated to an elliptic curve

被引:0
作者
Arala, Nuno [1 ]
机构
[1] Univ Warwick, Warwick, England
基金
英国工程与自然科学研究理事会;
关键词
Elliptic curves; Rational points; Galois representations;
D O I
10.1016/j.jnt.2022.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given elliptic curve E defined over the rationals, we study the density of primes p satisfying gcd(#E(Fp), p -1) = 1 and give a conjectural value for this density with strong heuristic evidence for most elliptic curves, in an appropriate sense.(c) 2022 Published by Elsevier Inc.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 9 条
  • [1] THE SATO-TATE CONJECTURE FOR HILBERT MODULAR FORMS
    Barnet-Lamb, Thomas
    Gee, Toby
    Geraghty, David
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (02) : 411 - 469
  • [2] A Family of Calabi-Yau Varieties and Potential Automorphy II
    Barnet-Lamb, Tom
    Geraghty, David
    Harris, Michael
    Taylor, Richard
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) : 29 - 98
  • [3] Daniels HB, 2022, Arxiv, DOI arXiv:2008.09886
  • [4] A family of Calabi-Yau varieties and potential automorphy
    Harris, Michael
    Shepherd-Barron, Nick
    Taylor, Richard
    [J]. ANNALS OF MATHEMATICS, 2010, 171 (02) : 779 - 813
  • [5] ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES
    Jones, Nathan
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (03) : 1547 - 1570
  • [6] SERRE JP, 1972, INVENT MATH, V15, P259
  • [7] Siksek S, 2021, Arxiv, DOI arXiv:2105.00570
  • [8] Silverman J. H., 2016, Arithmetic of Elliptic Curves, Vsecond ed
  • [9] A REFINEMENT OF KOBLITZ'S CONJECTURE
    Zywina, David
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (03) : 739 - 769