NONLOCAL DISPERSAL EQUATIONS IN DOMAINS BECOMING UNBOUNDED

被引:1
作者
Sun, Jian-Wen [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2023年 / 28卷 / 01期
关键词
  Nonlocal dispersal; positive solution; asymptotic behavior; POSITIVE SOLUTIONS; SPATIAL HETEROGENEITY; ASYMPTOTIC-BEHAVIOR; EIGENVALUE PROBLEMS; ELLIPTIC-EQUATIONS; LOGISTIC EQUATION; APPROXIMATE; MIGRATION; EVOLUTION;
D O I
10.3934/dcdsb.2022076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a class of nonlocal dispersal equation in asymptotically cylindrical domain. Our aim is to investigate the asymptotic behavior of positive solutions in domain becoming infinite in some direction. We prove that the limiting behavior of positive solutions is only determined by the bounded part of whole domain.
引用
收藏
页码:287 / 293
页数:7
相关论文
共 30 条
[1]  
Andreu-Vaillo F., 2010, Mathematical Surveys and Monographs, V165, DOI DOI 10.1090/SURV/165
[2]   Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal [J].
Bates, Peter W. ;
Zhao, Guangyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :428-440
[3]   NUMBER OF SOLUTIONS OF CERTAIN SEMI-LINEAR ELLIPTIC PROBLEMS [J].
BERESTYCKI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 40 (01) :1-29
[4]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106
[5]   Asymptotic behavior for nonlocal diffusion equations [J].
Chasseigne, Emmanuel ;
Chaves, Manuela ;
Rossi, Julio D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03) :271-291
[6]   On the behavior of positive solutions of semilinear elliptic equations in asymptotically cylindrical domains [J].
Chipot, Michel ;
Davila, Juan ;
del Pino, Manuel .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) :205-213
[7]   How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems [J].
Cortazar, Carmen ;
Elgueta, Manuel ;
Rossi, Julio D. ;
Wolanski, Noemi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 187 (01) :137-156
[8]   On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators [J].
Coville, Jerome .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (11) :2921-2953
[9]   POSITIVE SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION ON A COMPACT MANIFOLD [J].
DELPINO, MA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (11) :1423-1430
[10]  
Du Y., 2002, DIFFERENTIAL INTEGRA, V15, P805