Electron energy gain due to a laser frequency modulation experienced by electron during betatron motion

被引:2
作者
Arefiev, A. [1 ]
Yeh, I. -L. [2 ]
Tangtartharakul, K. [1 ]
Willingale, L. [3 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA
基金
英国工程与自然科学研究理事会;
关键词
ACCELERATION; GENERATION; BEAM;
D O I
10.1063/5.0190559
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Direct laser acceleration of electrons is an important energy deposition mechanism for laser-irradiated plasmas that is particularly effective at relativistic laser intensities in the presence of quasi-static laser-driven plasma electric and magnetic fields. These radial electric and azimuthal magnetic fields provide transverse electron confinement by inducing betatron oscillations of forward-moving electrons undergoing laser acceleration. Electrons are said to experience a betatron resonance when the frequency of betatron oscillations matches the average frequency of the laser field oscillations at the electron position. In this paper, we show that the modulation of the laser frequency as seen by an electron performing betatron oscillations can be another important mechanism for net energy gain that is qualitatively different from the betatron resonance. Specifically, we show that the frequency modulation experienced by the electron can lead to net energy gain in the regime where the laser field performs three oscillations per betatron oscillation. There is no net energy gain in this regime without the modulation because the energy gain is fully compensated by the energy loss. The modulation slows down the laser oscillation near transverse stopping points, increasing the time interval during which the electron gains energy and making it possible to achieve net energy gain.
引用
收藏
页数:11
相关论文
共 35 条
  • [21] Characterization of 7Li(p,n)7Be neutron yields from laser produced ion beams for fast neutron radiography
    Lancaster, KL
    Karsch, S
    Habara, H
    Beg, FN
    Clark, EL
    Freeman, R
    Key, MH
    King, JA
    Kodama, R
    Krushelnick, K
    Ledingham, KWD
    McKenna, P
    Murphy, CD
    Norreys, PA
    Stephens, R
    Stöeckl, C
    Toyama, Y
    Wei, MS
    Zepf, M
    [J]. PHYSICS OF PLASMAS, 2004, 11 (07) : 3404 - 3408
  • [22] Particle resonances and trapping of direct laser acceleration in a laser-plasma channel
    Li, F. -Y.
    Singh, P. K.
    Palaniyappan, S.
    Huang, C. -K.
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (04):
  • [23] Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP
    Peebles, J.
    Wei, M. S.
    Arefiev, A. V.
    Mc Guffey, C.
    Stephens, R. B.
    Theobald, W.
    Haberberger, D.
    Jarrott, L. C.
    link, A.
    Chen, H.
    McLean, H. S.
    Sorokovikova, A.
    Krasheninnikov, S.
    Beg, F. N.
    [J]. NEW JOURNAL OF PHYSICS, 2017, 19
  • [24] Ultrashort Pulsed Neutron Source
    Pomerantz, I.
    McCary, E.
    Meadows, A. R.
    Arefiev, A.
    Bernstein, A. C.
    Chester, C.
    Cortez, J.
    Donovan, M. E.
    Dyer, G.
    Gaul, E. W.
    Hamilton, D.
    Kuk, D.
    Lestrade, A. C.
    Wang, C.
    Ditmire, T.
    Hegelich, B. M.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (18)
  • [25] Particle acceleration in relativistic laser channels
    Pukhov, A
    Sheng, ZM
    Meyer-ter-Vehn, J
    [J]. PHYSICS OF PLASMAS, 1999, 6 (07) : 2847 - 2854
  • [26] Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation
    Pukhov, A
    MeyerterVehn, J
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (21) : 3975 - 3978
  • [27] Relativistically transparent magnetic filaments: scaling laws, initial results and prospects for strong-field QED studies
    Rinderknecht, H. G.
    Wang, T.
    Garcia, A. Laso
    Bruhaug, G.
    Wei, M. S.
    Quevedo, H. J.
    Ditmire, T.
    Williams, J.
    Haid, A.
    Doria, D.
    Spohr, K. M.
    Toncian, T.
    Arefiev, A.
    [J]. NEW JOURNAL OF PHYSICS, 2021, 23 (09):
  • [28] Generating "Superponderomotive" Electrons due to a Non-Wake-Field Interaction between a Laser Pulse and a Longitudinal Electric Field
    Robinson, A. P. L.
    Arefiev, A. V.
    Neely, D.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (06)
  • [29] Enhanced Multi-MeV Photon Emission by a Laser-Driven Electron Beam in a Self-Generated Magnetic Field
    Stark, D. J.
    Toncian, T.
    Arefiev, A. V.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (18)
  • [30] Power Scaling for Collimated γ-Ray Beams Generated by Structured Laser-Irradiated Targets and Its Application to Two-Photon Pair Production
    Wang, T.
    Ribeyre, X.
    Gong, Z.
    Jansen, O.
    d'Humieres, E.
    Stutman, D.
    Toncian, T.
    Arefiev, A.
    [J]. PHYSICAL REVIEW APPLIED, 2020, 13 (05)