A Four-Channel BiCMOS Transmitter for a Quantum Magnetometer Based on Nitrogen-Vacancy Centers in Diamond

被引:3
作者
Lotfi, Hadi [1 ]
Kern, Michal [1 ]
Yang, Qing [1 ]
Unden, Thomas [2 ]
Striegler, Nico [2 ]
Scharpf, Jochen [2 ]
Schalberger, Patrick [3 ]
Stoehr, Rainer [4 ]
Schwartz, Ilai [2 ]
Neumann, Philipp [2 ]
Anders, Jens [1 ,5 ,6 ]
机构
[1] Univ Stuttgart, Inst Smart Sensors, D-70569 Stuttgart, Germany
[2] NVis Imaging Technol GmbH, D-89081 Ulm, Germany
[3] Univ Stuttgart, Inst Large Area Microelect, D-70569 Stuttgart, Germany
[4] Univ Stuttgart, Phys Inst 3, D-70569 Stuttgart, Germany
[5] Inst Microelect Stuttgart, D-70569 Stuttgart, Germany
[6] Ctr Integrated Quantum Sci & Technol IQST, D-70569 Stuttgart, Germany
关键词
Nitrogen-vacancy(NV)centers; optically detected magnetic resonance (ODMR); power amplifier (PA); quadrature phase-locked loop (QPLL); quantum sensor; radiofrequency transmitter (RF TX); SiGe BiCMOS; SPIN;
D O I
10.1109/JSSC.2024.3350995
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum sensors based on solid-state defects, such as the nitrogen-vacancy (NV) center in diamond, offer very good room-temperature sensitivity, long-term stability, and the potential for calibration-free measurements. However, most quantum sensors still suffer from a bulky size and weight, low energy efficiency, and high costs, prohibiting their widespread use. Here, we present custom-designed chip-integrated microwave (MW) electronics for a miniaturized, low-cost, and highly scalable quantum magnetometer based on NV centers in diamond. The presented electronics include a quadrature phase-locked loop (QPLL) chip to generate the required local oscillator signal at around 7 GHz with a wide tuning range of 22% and a low phase noise (PN) of - 122 dBc/Hz at 1-MHz offset from a 7-GHz carrier for broadband low-noise magnetometry. In addition, the magnetometer electronics comprise a 4-channel transmitter chip, which can provide currents up to 412 mA(pp) into a custom-designed inductor over a wide frequency range from 6.4 to 8 GHz. In combination with a custom-designed coil, manufactured on a glass substrate for optical transparency, which features a large active area of ( pi x 180 x 180 mu m(2) ), this current is sufficient to produce strong MW magnetic fields up to B-1=(1/2)& sdot;B-ac=170 mu T , enabling pulsed optically detected magnetic resonance (ODMR) experiments. In proof-of-concept ODMR experiments, the presented chip-based spin control system produces fast Rabi oscillations of 5.49 MHz. The measured dc and ac magnetic field limits of detection (LOD) of the presented magnetometer are 32 nT/Hz (1/2) and 300 pT/Hz (1/2) , respectively.
引用
收藏
页码:1421 / 1432
页数:12
相关论文
共 50 条
  • [41] Multiplexed sensing of biomolecules with optically detected magnetic resonance of nitrogen-vacancy centers in diamond
    Kayci, Metin
    Fan, Jilin
    Bakirman, Onur
    Herrmann, Andreas
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (51)
  • [42] Miniaturized VLF Antenna Utilizing Nitrogen-Vacancy Centers in Diamond for Vector Signal Detection
    Fu, Dingyuan
    Ye, An
    Tang, Yutong
    Li, Xiaolin
    Niu, Yueping
    Gong, Shangqing
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2025, 52 (02):
  • [43] Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes
    Ruf, Maximilian
    IJspeert, Mark
    van Dam, Suzanne
    de Jong, Nick
    van den Berg, Hans
    Evers, Guus
    Hanson, Ronald
    NANO LETTERS, 2019, 19 (06) : 3987 - 3992
  • [44] Effect of ultraprecision polishing techniques on coherence times of shallow nitrogen-vacancy centers in diamond
    Braunbeck, G.
    Mandal, S.
    Touge, M.
    Williams, O. A.
    Reinhard, F.
    DIAMOND AND RELATED MATERIALS, 2018, 85 : 18 - 22
  • [45] Optimum Photoluminescence Excitation and Recharging Cycle of Single Nitrogen-Vacancy Centers in Ultrapure Diamond
    Beha, K.
    Batalov, A.
    Manson, N. B.
    Bratschitsch, R.
    Leitenstorfer, A.
    PHYSICAL REVIEW LETTERS, 2012, 109 (09)
  • [46] Control of photoluminescence of nitrogen-vacancy centers embedded in diamond nanoparticles coupled to silicon nanoantennas
    Zalogina, Anastasiia
    Javadzade, Javid
    Savelev, Roman
    Komissarenko, Filipp
    Uvarov, Alexander
    Mukhin, Ivan
    Shadrivov, Ilya
    Akimov, Alexey
    Zuev, Dmitry
    APPLIED PHYSICS LETTERS, 2023, 122 (10)
  • [47] Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals
    Sakurai, Ryosuke
    Kainuma, Yuta
    An, Toshu
    Shigekawa, Hidemi
    Hase, Muneaki
    APL PHOTONICS, 2022, 7 (06)
  • [48] Toward Optimized Surface δ-Profiles of Nitrogen-Vacancy Centers Activated by Helium Irradiation in Diamond
    de Oliveira, Felipe Favaro
    Momenzadeh, S. Ali
    Antonov, Denis
    Scharpf, Jochen
    Osterkamp, Christian
    Naydenov, Boris
    Jelezko, Fedor
    Denisenko, Andrej
    Wrachtrup, Joerg
    NANO LETTERS, 2016, 16 (04) : 2228 - 2233
  • [49] Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing
    Orwa, J. O.
    Santori, C.
    Fu, K. M. C.
    Gibson, B.
    Simpson, D.
    Aharonovich, I.
    Stacey, A.
    Cimmino, A.
    Balog, P.
    Markham, M.
    Twitchen, D.
    Greentree, A. D.
    Beausoleil, R. G.
    Prawer, S.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [50] Efficient conversion of nitrogen to nitrogen-vacancy centers in diamond particles with high-temperature electron irradiation
    Mindarava, Yuliya
    Blinder, Remi
    Laube, Christian
    Knolle, Wolfgang
    Abel, Bernd
    Jentgens, Christian
    Isoya, Junichi
    Scheuer, Jochen
    Lang, Johannes
    Schwartz, Ilai
    Naydenov, Boris
    Jelezko, Fedor
    CARBON, 2020, 170 : 182 - 190