Fast clonal family inference from large-scale B cell repertoire sequencing data

被引:2
作者
Wang, Kaixuan [1 ]
Hu, Xihao [2 ]
Zhang, Jian [1 ]
机构
[1] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin, Peoples R China
[2] GV20 Therapeut, Cambridge, MA USA
来源
CELL REPORTS METHODS | 2023年 / 3卷 / 10期
基金
中国国家自然科学基金;
关键词
SOMATIC HYPERMUTATION; RECEPTOR REPERTOIRES; AFFINITY MATURATION; ANTIBODY; IMMUNOGLOBULIN; HIV-1; GENERATION; LINEAGE; INSERTIONS; MECHANISM;
D O I
10.1016/j.crmeth.2023.100601
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Advances in high-throughput sequencing technologies have facilitated the large-scale characterization of B cell receptor (BCR) repertoires. However, the vast amount and high diversity of the BCR sequences pose challenges for efficient and biologically meaningful analysis. Here, we introduce fastBCR, an efficient computational approach for inferring B cell clonal families from massive BCR heavy chain sequences. We demonstrate that fastBCR substantially reduces the running time while ensuring high accuracy on simulated data sets with diverse numbers of B cell lineages and varying mutation rates. We apply fastBCR to real BCR sequencing data from peripheral blood samples of COVID-19 patients, showing that the inferred clonal families display disease-associated features, as well as corresponding antigen-binding specificity and affinity. Overall, our results demonstrate the advantages of fastBCR for analyzing BCR repertoire data, which will facilitate the identification of disease-associated antibodies and improve our understanding of the B cell immune response.
引用
收藏
页数:22
相关论文
共 61 条
  • [41] Targeting of somatic hypermutation
    Odegard, Valerie H.
    Schatz, David G.
    [J]. NATURE REVIEWS IMMUNOLOGY, 2006, 6 (08) : 573 - 583
  • [42] Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design
    Peng, Ya
    Du, Ning
    Lei, Yuqing
    Dorje, Sonam
    Qi, Jianxun
    Luo, Tingrong
    Gao, George F.
    Song, Hao
    [J]. EMBO JOURNAL, 2020, 39 (20)
  • [43] R Core Team, 2022, R: A Language and Environment for Statistical Computing
  • [44] Likelihood-Based Inference of B Cell Clonal Families
    Ralph, Duncan K.
    Matsen, Frederick A.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (10)
  • [45] Raybould Matthew I J, 2021, Bioinformatics, V37, P734, DOI 10.1093/bioinformatics/btaa739
  • [46] Codon insertion and deletion functions as a somatic diversification mechanism in human antibody repertoires
    Reason, Donald C.
    Zhou, Jianhui
    [J]. BIOLOGY DIRECT, 2006, 1 (1)
  • [47] Unconstrained generation of synthetic antibody-antigen structures to guide machine learning methodology for antibody specificity prediction
    Robert, Philippe A.
    Akbar, Rahmad
    Frank, Robert
    Pavlovic, Milena
    Widrich, Michael
    Snapkov, Igor
    Slabodkin, Andrei
    Chernigovskaya, Maria
    Scheffer, Lonneke
    Smorodina, Eva
    Rawat, Puneet
    Mehta, Brij Bhushan
    Mai Ha Vu
    Mathisen, Ingvild Froberg
    Prosz, Aurel
    Abram, Krzysztof
    Olar, Alex
    Miho, Enkelejda
    Haug, Dag Trygve Tryslew
    Lund-Johansen, Fridtjof
    Hochreiter, Sepp
    Haff, Ingrid Hobaek
    Klambauer, Gunter
    Sandve, Geir Kjetil
    Greiff, Victor
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (12): : 845 - +
  • [48] Next-Generation Sequencing of T and B Cell Receptor Repertoires from COVID-19 Patients Showed Signatures Associated with Severity of Disease
    Schultheiss, Christoph
    Paschold, Lisa
    Simnica, Donjete
    Mohme, Malte
    Willscher, Edith
    von Wenserski, Lisa
    Scholz, Rebekka
    Wieters, Imke
    Dahlke, Christine
    Tolosa, Eva
    Sedding, Daniel G.
    Ciesek, Sandra
    Addo, Marylyn
    Binder, Mascha
    [J]. IMMUNITY, 2020, 53 (02) : 442 - +
  • [49] TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data
    Song, Li
    Cohen, David
    Ouyang, Zhangyi
    Cao, Yang
    Hu, Xihao
    Liu, X. Shirley
    [J]. NATURE METHODS, 2021, 18 (06) : 627 - +
  • [50] Thompson J. D., 2003, Curr. Protoc. Bioinform, V2, pUnit 2.3, DOI [10.1002/0471250953.bi0203s00, DOI 10.1002/0471250953.BI0203S00]