Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery

被引:14
|
作者
Anandhakumar, C. [1 ]
Murugan, N. S. Sakthivel [2 ]
Kumaresan, K. [3 ]
机构
[1] Sri Ramakrishna Inst Technol, Dept EEE, Coimbatore 641010, Tamil Nadu, India
[2] Pk Coll Engn & Technol, Dept CSE, Kaniyur 641659, Tamil Nadu, India
[3] Pk Coll Engn & Technol, Dept Mech, Kaniyur 641659, Tamil Nadu, India
关键词
Battery management systems; State-Of-Charge; Extreme Learning Machine; Honey Badger Optimization; Lithium ion battery;
D O I
10.1016/j.eswa.2023.121609
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate state-of-charge (SOC) detection was still a challenging task to complete due to complex battery dynamics and constantly changing external conditions. The formula for SOC was difficult to determine since external parameters including voltage, current, temperature, and battery arrangement were complex. Also the methods for estimating SOC that were already in use were not always appropriate for the same car operating in various road and climatic conditions. In all situations, the conventional methodologies did not deliver an accurate estimation performance. Here, a unique optimization-based Extreme Learning Machine (ELM) was created to accurately determine a battery's SOC and enhance the operation and safety of battery systems. A lithium ion battery was first created, and data on its current, voltage, SOC, capacity, duration, and discharge rate were gathered to produce a real-time dataset at several temperatures, including 0(degrees), 25(degrees) and 45(degrees). The dataset underwent additional pre-processing to standardize the values and enhance the accuracy of the data. To determine the precise state of the battery, these pre-data were loaded into the ELM model. However, the performance of ELM was significantly influenced by the length of training and the number of neurons in a hidden layer. An advanced Honey Badger Optimization Algorithm (HBA) was used to choose the appropriate hidden neurons and increase the estimation accuracy in order to overcome this problem. The proposed SOC estimation model provides 97% accuracy in the FUDS drive cycle and 99% accuracy in the US06 drive cycle. The proposed model provides a well performance for estimating SOC in lithium-ion battery at various temperature, also the proposed model was fit for real time implementation.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Lithium-ion battery State-of-Charge estimation based on an improved Coulomb-Counting algorithm and uncertainty evaluation
    Mohammadi, Fazel
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [42] Adaptive state of charge estimation of Lithium-ion battery based on battery capacity degradation model
    Yang, Guodong
    Li, Junqiu
    Fu, Zijian
    Guo, Lin
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 514 - 519
  • [43] Lithium-ion battery state-of-charge estimation based on a dual extended Kalman filter and BPNN correction
    Xing, Likun
    Ling, Liuyi
    Wu, Xianyuan
    CONNECTION SCIENCE, 2022, 34 (01) : 2332 - 2363
  • [44] An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery
    Guo, Jishu
    Liu, Shulin
    Zhu, Rui
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [45] Lithium-Ion Battery State-of-Charge Estimation Using Electrochemical Model with Sensitive Parameters Adjustment
    Wang, Jingrong
    Meng, Jinhao
    Peng, Qiao
    Liu, Tianqi
    Zeng, Xueyang
    Chen, Gang
    Li, Yan
    BATTERIES-BASEL, 2023, 9 (03):
  • [46] The Remaining Useful Life Estimation of Lithium-ion Battery Based on Improved Extreme Learning Machine Algorithm
    Yang, Jing
    Peng, Zhen
    Wang, Hongmin
    Yuan, Huimei
    Wu, Lifeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (05): : 4991 - 5004
  • [47] The Lithium-ion Battery State-of-Charge Estimation using Random Forest Regression
    Li, Chuanjiang
    Chen, Zewang
    Cui, Jiang
    Wang, Youren
    Zou, Feng
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 336 - 339
  • [48] Improved Algorithm Based on AEKF for State of Charge Estimation of Lithium-ion Battery
    Yuzhen Jin
    Chenglong Su
    Shichang Luo
    International Journal of Automotive Technology, 2022, 23 : 1003 - 1011
  • [49] Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer
    Sun, Li
    Li, Guanru
    You, Fengqi
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 131
  • [50] A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
    Ren, Zhong
    Du, Changqing
    ENERGY REPORTS, 2023, 9 : 2993 - 3021