Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery

被引:14
|
作者
Anandhakumar, C. [1 ]
Murugan, N. S. Sakthivel [2 ]
Kumaresan, K. [3 ]
机构
[1] Sri Ramakrishna Inst Technol, Dept EEE, Coimbatore 641010, Tamil Nadu, India
[2] Pk Coll Engn & Technol, Dept CSE, Kaniyur 641659, Tamil Nadu, India
[3] Pk Coll Engn & Technol, Dept Mech, Kaniyur 641659, Tamil Nadu, India
关键词
Battery management systems; State-Of-Charge; Extreme Learning Machine; Honey Badger Optimization; Lithium ion battery;
D O I
10.1016/j.eswa.2023.121609
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate state-of-charge (SOC) detection was still a challenging task to complete due to complex battery dynamics and constantly changing external conditions. The formula for SOC was difficult to determine since external parameters including voltage, current, temperature, and battery arrangement were complex. Also the methods for estimating SOC that were already in use were not always appropriate for the same car operating in various road and climatic conditions. In all situations, the conventional methodologies did not deliver an accurate estimation performance. Here, a unique optimization-based Extreme Learning Machine (ELM) was created to accurately determine a battery's SOC and enhance the operation and safety of battery systems. A lithium ion battery was first created, and data on its current, voltage, SOC, capacity, duration, and discharge rate were gathered to produce a real-time dataset at several temperatures, including 0(degrees), 25(degrees) and 45(degrees). The dataset underwent additional pre-processing to standardize the values and enhance the accuracy of the data. To determine the precise state of the battery, these pre-data were loaded into the ELM model. However, the performance of ELM was significantly influenced by the length of training and the number of neurons in a hidden layer. An advanced Honey Badger Optimization Algorithm (HBA) was used to choose the appropriate hidden neurons and increase the estimation accuracy in order to overcome this problem. The proposed SOC estimation model provides 97% accuracy in the FUDS drive cycle and 99% accuracy in the US06 drive cycle. The proposed model provides a well performance for estimating SOC in lithium-ion battery at various temperature, also the proposed model was fit for real time implementation.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Joint State-of-Charge and State-of-Available-Power Estimation Based on the Online Parameter Identification of Lithium-Ion Battery Model
    Zhang, Wenjie
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    Zhang, Yuwang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (04) : 3677 - 3688
  • [32] A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles
    Kim, Woo-Yong
    Lee, Pyeong-Yeon
    Kim, Jonghoon
    Kim, Kyung-Soo
    ENERGIES, 2019, 12 (17)
  • [33] Iterative Learning Based Model Identification and State of Charge Estimation of Lithium-Ion Battery
    Zhu, Qiao
    Xu, Meng'en
    Zheng, Meng'qian
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 222 - 228
  • [34] Overview of Lithium-Ion Battery Modeling Methods for State-of-Charge Estimation in Electrical Vehicles
    Meng, Jinhao
    Luo, Guangzhao
    Ricco, Mattia
    Swierczynski, Maciej
    Stroe, Daniel-Ioan
    Teodorescu, Remus
    APPLIED SCIENCES-BASEL, 2018, 8 (05):
  • [35] Online estimation of the state of charge of a lithium-ion battery based on the fusion model
    Wang X.-L.
    Jin H.-Q.
    Liu X.-Y.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (09): : 1200 - 1208
  • [36] State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning Algorithms
    Chandran, Venkatesan
    Patil, Chandrashekhar K.
    Karthick, Alagar
    Ganeshaperumal, Dharmaraj
    Rahim, Robbi
    Ghosh, Aritra
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (01):
  • [37] State of charge estimation of lithium-ion battery based on improved adaptive boosting algorithm
    Zhao, Xiaobo
    Jung, Seunghun
    Wang, Biao
    Xuan, Dongji
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [38] State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
    Lee, Seongjun
    Kim, Jonghoon
    Lee, Jaemoon
    Cho, B. H.
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 1367 - 1373
  • [39] Transfer Learning Techniques for the Lithium-Ion Battery State of Charge Estimation
    Eleftheriadis, Panagiotis
    Giazitzis, Spyridon
    Leva, Sonia
    Ogliari, Emanuele
    IEEE ACCESS, 2024, 12 : 993 - 1004
  • [40] Online State-of-Charge Estimation for Lithium-ion Batteries Based on the ARX Model
    Nie W.
    Tan W.
    Qiu G.
    Li C.
    Nie X.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2018, 38 (18): : 5415 - 5424