Dynamical Behaviour, Control, and Boundedness of a Fractional-Order Chaotic System

被引:7
作者
Ren, Lei [1 ]
Muhsen, Sami [2 ]
Shateyi, Stanford [3 ]
Saberi-Nik, Hassan [4 ]
机构
[1] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Peoples R China
[2] Al Mustaqbal Univ, Coll Engn & Technol, Air Conditioning & Refrigerat Tech Engn Dept, Babylon 51001, Iraq
[3] Univ Venda, Dept Math, Private Bag X5050, ZA-0950 Thohoyandou, South Africa
[4] Univ Neyshabur, Dept Math & Stat, Neyshabur 9319774446, Iran
关键词
fractional-order hyperchaotic system; global Mittag-Leffler attractive sets (MLASs); Mittag-Leffler positive invariant sets (MLPISs); chaos control; ULTIMATE BOUND SETS; LORENZ; SYNCHRONIZATION;
D O I
10.3390/fractalfract7070492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the fractional-order chaotic system form of a four-dimensional system with cross-product nonlinearities is introduced. The stability of the equilibrium points of the system and then the feedback control design to achieve this goal have been analyzed. Furthermore, further dynamical behaviors including, phase portraits, bifurcation diagrams, and the largest Lyapunov exponent are presented. Finally, the global Mittag-Leffler attractive sets (MLASs) and Mittag-Leffler positive invariant sets (MLPISs) of the considered fractional order system are presented. Numerical simulations are provided to show the effectiveness of the results.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    CHINESE PHYSICS B, 2010, 19 (09)
  • [32] Dynamical Analysis and Circuit Simulation of a New Fractional-Order Hyperchaotic System and Its Discretization
    El-Sayed, A. M. A.
    Elsonbaty, A.
    Elsadany, A. A.
    Matouk, A. E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (13):
  • [33] Dynamic analysis of a fractional-order Lorenz chaotic system
    Yu, Yongguang
    Li, Han-Xiong
    Wang, Sha
    Yu, Junzhi
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1181 - 1189
  • [34] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, (09) : 237 - 242
  • [35] Designing synchronization schemes for fractional-order chaotic system via a single state fractional-order controller
    Li, Tianzeng
    Wang, Yu
    Yang, Yong
    OPTIK, 2014, 125 (22): : 6700 - 6705
  • [36] Fractional-Order Adaptive Backstepping Control of a Noncommensurate Fractional-Order Ferroresonance System
    Wang, Yan
    Liu, Ling
    Liu, Chongxin
    Zhu, Ziwei
    Sun, Zhenquan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [37] Fractional-order complex T system: bifurcations, chaos control, and synchronization
    Liu, Xiaojun
    Hong, Ling
    Yang, Lixin
    NONLINEAR DYNAMICS, 2014, 75 (03) : 589 - 602
  • [38] Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control
    Li, Ruihong
    Li, Wei
    OPTIK, 2015, 126 (21): : 2965 - 2973
  • [39] Chaotic Control in Fractional-Order Discrete-Time Systems
    Ouannas, Adel
    Grassi, Giuseppe
    Azar, Ahmad Taher
    Khennaouia, Amina Aicha
    Viet-Thanh Pham
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2019, 2020, 1058 : 207 - 217
  • [40] Synchronization of Fractional-Order Memristor-Based Chaotic System via Adaptive Control
    丁大为
    张亚琴
    王年
    JournalofDonghuaUniversity(EnglishEdition), 2017, 34 (05) : 653 - 660