Dynamical Behaviour, Control, and Boundedness of a Fractional-Order Chaotic System

被引:7
|
作者
Ren, Lei [1 ]
Muhsen, Sami [2 ]
Shateyi, Stanford [3 ]
Saberi-Nik, Hassan [4 ]
机构
[1] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Peoples R China
[2] Al Mustaqbal Univ, Coll Engn & Technol, Air Conditioning & Refrigerat Tech Engn Dept, Babylon 51001, Iraq
[3] Univ Venda, Dept Math, Private Bag X5050, ZA-0950 Thohoyandou, South Africa
[4] Univ Neyshabur, Dept Math & Stat, Neyshabur 9319774446, Iran
关键词
fractional-order hyperchaotic system; global Mittag-Leffler attractive sets (MLASs); Mittag-Leffler positive invariant sets (MLPISs); chaos control; ULTIMATE BOUND SETS; LORENZ; SYNCHRONIZATION;
D O I
10.3390/fractalfract7070492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the fractional-order chaotic system form of a four-dimensional system with cross-product nonlinearities is introduced. The stability of the equilibrium points of the system and then the feedback control design to achieve this goal have been analyzed. Furthermore, further dynamical behaviors including, phase portraits, bifurcation diagrams, and the largest Lyapunov exponent are presented. Finally, the global Mittag-Leffler attractive sets (MLASs) and Mittag-Leffler positive invariant sets (MLPISs) of the considered fractional order system are presented. Numerical simulations are provided to show the effectiveness of the results.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Delayed feedback control of fractional-order chaotic systems
    Gjurchinovski, A.
    Sandev, T.
    Urumov, V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (44)
  • [22] Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model
    Matouk, A. E.
    Elsadany, A. A.
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1597 - 1612
  • [23] Control of a class of fractional-order chaotic systems via sliding mode
    Chen, Di-yi
    Liu, Yu-xiao
    Ma, Xiao-yi
    Zhang, Run-fan
    NONLINEAR DYNAMICS, 2012, 67 (01) : 893 - 901
  • [24] Adaptive observer-based control for fractional-order chaotic MEMS system
    Yaghoubi, Zahra
    Adeli, Mahdieh
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (11) : 1586 - 1598
  • [25] Adaptive track control for fractional-order chaotic systems with or without uncertainty
    Li, Ruihong
    OPTIK, 2016, 127 (23): : 11263 - 11276
  • [26] An Adaptive Tracking Control of Fractional-Order Chaotic Systems with Uncertain System Parameter
    Zhou, Ping
    Ding, Rui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [27] Impulsive Control and Synchronization for Fractional-Order Hyper-Chaotic Financial System
    Li, Xinggui
    Rao, Ruofeng
    Zhong, Shouming
    Yang, Xinsong
    Li, Hu
    Zhang, Yulin
    MATHEMATICS, 2022, 10 (15)
  • [28] Dynamic Analysis for a Fractional-Order Autonomous Chaotic System
    Zhang, Jiangang
    Nan, Juan
    Du, Wenju
    Chu, Yandong
    Luo, Hongwei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [29] Multistability analysis of a conformable fractional-order chaotic system
    Ma, Chenguang
    Jun, Mou
    Cao, Yinghong
    Liu, Tianming
    Wang, Jieyang
    PHYSICA SCRIPTA, 2020, 95 (07)
  • [30] Study on the fractional-order Liu chaotic system with circuit experiment and its control
    Chen Xiang-Rong
    Liu Chong-Xin
    Wang Fa-Qiang
    Li Yong-Xun
    ACTA PHYSICA SINICA, 2008, 57 (03) : 1416 - 1422