Dynamical Behaviour, Control, and Boundedness of a Fractional-Order Chaotic System

被引:7
|
作者
Ren, Lei [1 ]
Muhsen, Sami [2 ]
Shateyi, Stanford [3 ]
Saberi-Nik, Hassan [4 ]
机构
[1] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Peoples R China
[2] Al Mustaqbal Univ, Coll Engn & Technol, Air Conditioning & Refrigerat Tech Engn Dept, Babylon 51001, Iraq
[3] Univ Venda, Dept Math, Private Bag X5050, ZA-0950 Thohoyandou, South Africa
[4] Univ Neyshabur, Dept Math & Stat, Neyshabur 9319774446, Iran
关键词
fractional-order hyperchaotic system; global Mittag-Leffler attractive sets (MLASs); Mittag-Leffler positive invariant sets (MLPISs); chaos control; ULTIMATE BOUND SETS; LORENZ; SYNCHRONIZATION;
D O I
10.3390/fractalfract7070492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the fractional-order chaotic system form of a four-dimensional system with cross-product nonlinearities is introduced. The stability of the equilibrium points of the system and then the feedback control design to achieve this goal have been analyzed. Furthermore, further dynamical behaviors including, phase portraits, bifurcation diagrams, and the largest Lyapunov exponent are presented. Finally, the global Mittag-Leffler attractive sets (MLASs) and Mittag-Leffler positive invariant sets (MLPISs) of the considered fractional order system are presented. Numerical simulations are provided to show the effectiveness of the results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The global dynamics of a new fractional-order chaotic system
    Liu, Ping
    Zhang, Yulan
    Mohammed, Khidhair Jasim
    Lopes, Antonio M.
    Saberi-Nik, Hassan
    CHAOS SOLITONS & FRACTALS, 2023, 175
  • [2] Control fractional-order continuous chaotic system via a simple fractional-order controller
    Zhang, Dong
    Yang, Shou-liang
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 770 - 773
  • [3] Adaptive control and synchronization of a fractional-order chaotic system
    CHUNLAI LI
    YAONAN TONG
    Pramana, 2013, 80 : 583 - 592
  • [4] Adaptive control and synchronization of a fractional-order chaotic system
    Li, Chunlai
    Tong, Yaonan
    PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (04): : 583 - 592
  • [5] The Synchronization of a fractional-order chaotic system
    Zhang Fan-di
    ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES, PTS 1-3, 2013, 655-657 : 1488 - 1491
  • [6] Chaotic fractional-order Coullet system: Synchronization and control approach
    Shahiri, M.
    Ghaderi, R.
    Ranjbar N, A.
    Hosseinnia, S. H.
    Momani, S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (03) : 665 - 674
  • [7] Fractional-Order Control for a Novel Chaotic System Without Equilibrium
    Shao, Shuyi
    Chen, Mou
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (04) : 1000 - 1009
  • [8] The characteristics study of abounded fractional-order chaotic system: Complexity, and energy control
    Wu, Qingzhe
    Zhang, Juling
    Li, Miao
    Saberi-Nik, Hassan
    Awrejcewicz, Jan
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 111 : 588 - 600
  • [9] On the dynamical behaviors in fractional-order complex PMSM system and Hamilton energy control
    Hou, Yi-You
    Lin, An-Po
    Huang, Bo-Wun
    Chen, Cheng-Yi
    Lin, Ming-Hung
    Saberi-Nik, Hassan
    NONLINEAR DYNAMICS, 2024, 112 (03) : 1861 - 1881
  • [10] Control of A Fractional-Order Arneodo System
    Zhang, Kun
    Wang, Hua
    Wang, Huitao
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 4405 - 4412