Admissible representations of simple affine vertex algebras

被引:0
作者
Futorny, Vyacheslav [1 ,2 ]
Morales, Oscar [2 ]
Krizka, Libor [2 ]
机构
[1] SUSTech Univ, Int Ctr Math, Shenzhen, Peoples R China
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Affine Kac-Moody algebra; Affine vertex algebra; Nilpotent orbit; Gelfand-Tsetlin module; GELFAND-TSETLIN MODULES; OPERATOR-ALGEBRAS; CONSTRUCTION; RATIONALITY; VARIETY; IDEALS;
D O I
10.1016/j.jalgebra.2023.03.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an explicit combinatorial description of highest weights of simple highest weight modules over the simple affine vertex algebra L kappa(s[n+1) with n is an element of N of admissible level kappa. For admissible simple highest weight modules correspond-ing to the principal, subregular and maximal parabolic nilpo-tent orbits we give a realization using the Gelfand-Tsetlin theory, which also allows us to obtain a realization of certain classes of simple admissible s[2-induced modules in these or-bits. In particular, simple admissible s[2-induced modules are fully classified for the principal nilpotent orbit. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:22 / 70
页数:49
相关论文
共 31 条
[1]   Logarithmic intertwining operators and W(2,2p-1) algebras N [J].
Adamovic, Drazen ;
Milas, Antun .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[2]   Representations of certain non-rational vertex operator algebras of affine type [J].
Adamovic, Drazen ;
Perse, Ozren .
JOURNAL OF ALGEBRA, 2008, 319 (06) :2434-2450
[4]  
Adamovic D, 1995, MATH RES LETT, V2, P563
[5]   The N=1 Triplet Vertex Operator Superalgebras [J].
Adamovic, Drazen ;
Milas, Antun .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (01) :225-270
[6]   Weight Representations of Admissible Affine Vertex Algebras [J].
Arakawa, Tomoyuki ;
Futorny, Vyacheslav ;
Ramirez, Luis Enrique .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) :1151-1178
[7]   RATIONALITY OF ADMISSIBLE AFFINE VERTEX ALGEBRAS IN THE CATEGORY O [J].
Arakawa, Tomoyuki .
DUKE MATHEMATICAL JOURNAL, 2016, 165 (01) :67-93
[8]   Rationality of W-algebras: principal nilpotent cases [J].
Arakawa, Tomoyuki .
ANNALS OF MATHEMATICS, 2015, 182 (02) :565-604
[9]   Modularity of logarithmic parafermion vertex algebras [J].
Auger, Jean ;
Creutzig, Thomas ;
Ridout, David .
LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (12) :2543-2587
[10]   DIFFERENTIAL-OPERATORS ON HOMOGENEOUS SPACES .1. IRREDUCIBILITY OF THE ASSOCIATED VARIETY FOR ANNIHILATORS OF INDUCED MODULES [J].
BORHO, W ;
BRYLINSKI, JL .
INVENTIONES MATHEMATICAE, 1982, 69 (03) :437-476