Experimental Assessment of Multilevel RRAM-Based Vector-Matrix Multiplication Operations for In-Memory Computing

被引:4
作者
Quesada, Emilio Perez-Bosch [1 ]
Mahadevaiah, Mamathamba Kalishettyhalli [1 ]
Rizzi, Tommaso [1 ]
Wen, Jianan [1 ]
Ulbricht, Markus [1 ]
Krstic, Milos [1 ,2 ]
Wenger, Christian [1 ,3 ]
Perez, Eduardo [1 ]
机构
[1] IHP Leibniz Inst Innovat Mikroelekt, D-15230 Frankfurt, Oder, Germany
[2] Univ Potsdam, Inst Informat & Computat Sci, D-14476 Potsdam, Germany
[3] BTU Cottbus Senftenberg, D-01968 Cottbus, Germany
关键词
Virtual machine monitors; Logic gates; Programming; Random access memory; Voltage measurement; Nonvolatile memory; Monitoring; In-memory computing (IMC); multilevel; resistive random access memory (RRAM); vector-matrix multiplication (VMM);
D O I
10.1109/TED.2023.3244509
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Resistive random access memory (RRAM)-based hardware accelerators are playing an important role in the implementation of in-memory computing (IMC) systems for artificial intelligence applications. The latter heavily rely on vector-matrix multiplication (VMM) operations that can be efficiently boosted by RRAM devices. However, the stochastic nature of the RRAM technology is still challenging real hardware implementations. To study the accuracy degradation of consecutive VMM operations, in this work we programed two RRAM subarrays composed of 8 x 8 one-transistor-one-resistor (1T1R) cells following two different distributions of conductive levels. We analyze their robustness against 1000 identical consecutive VMM operations and monitor the inherent devices' nonidealities along the test. We finally quantize the accuracy loss of the operations in the digital domain and consider the trade-offs between linearly distributing the resistive states of the RRAM cells and their robustness against nonidealities for future implementation of IMC hardware systems.
引用
收藏
页码:2009 / 2014
页数:6
相关论文
共 35 条
[1]   Efficient Mixed-Signal Neurocomputing Via Successive Integration and Rescaling [J].
Bavandpour, Mohammad ;
Sahay, Shubham ;
Mahmoodi, Mohammad R. ;
Strukov, Dmitri .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (03) :823-827
[2]  
Bengel C., 2022, NEUROMORPHIC COMPUT, V2
[3]   Variability-Aware Modeling of Filamentary Oxide-Based Bipolar Resistive Switching Cells Using SPICE Level Compact Models [J].
Bengel, Christopher ;
Siemon, Anne ;
Cuppers, Felix ;
Hoffmann-Eifert, Susanne ;
Hardtdegen, Alexander ;
von Witzleben, Moritz ;
Hellmich, Lena ;
Waser, Rainer ;
Menzel, Stephan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (12) :4618-4630
[4]   An Automated Test Equipment for Characterization o Emerging MRAM and RRAM Arrays [J].
Grossi, Alessandro ;
Zambelli, Cristian ;
Olivo, Piero ;
Pellati, Paolo ;
Ramponi, Michele ;
Wenger, Christian ;
Alvarez-Herault, Jeremy ;
Mackay, Ken .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2018, 6 (02) :269-277
[5]   Characterization and Mitigation of Relaxation Effects on Multi-level RRAM based In-Memory Computing [J].
He, Wangxin ;
Shim, Wonbo ;
Yin, Shihui ;
Sun, Xiaoyu ;
Fan, Deliang ;
Yu, Shimeng ;
Seo, Jae-sun .
2021 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2021,
[6]  
Horowitz M, 2014, ISSCC DIG TECH PAP I, V57, P10, DOI 10.1109/ISSCC.2014.6757323
[7]   In-memory computing with resistive switching devices [J].
Ielmini, Daniele ;
Wong, H. -S. Philip .
NATURE ELECTRONICS, 2018, 1 (06) :333-343
[8]  
King S., 2020, 2020 IEEE INT C ENG, P1, DOI [10.1109/ICE/ITMC49519.2020.9198424, DOI 10.1109/ICE/ITMC49519.2020.9198424]
[9]   Synaptic electronics: materials, devices and applications [J].
Kuzum, Duygu ;
Yu, Shimeng ;
Wong, H-S Philip .
NANOTECHNOLOGY, 2013, 24 (38)
[10]   Standards for the Characterization of Endurance in Resistive Switching Devices [J].
Lanza, Mario ;
Waser, Rainer ;
Ielmini, Daniele ;
Yang, J. Joshua ;
Goux, Ludovic ;
Sune, Jordi ;
Kenyon, Anthony Joseph ;
Mehonic, Adnan ;
Spiga, Sabina ;
Rana, Vikas ;
Wiefels, Stefan ;
Menzel, Stephan ;
Valov, Ilia ;
Villena, Marco A. ;
Miranda, Enrique ;
Jing, Xu ;
Campabadal, Francesca ;
Gonzalez, Mireia B. ;
Aguirre, Fernando ;
Palumbo, Felix ;
Zhu, Kaichen ;
Roldan, Juan Bautista ;
Puglisi, Francesco Maria ;
Larcher, Luca ;
Hou, Tuo-Hung ;
Prodromakis, Themis ;
Yang, Yuchao ;
Huang, Peng ;
Wan, Tianqing ;
Chai, Yang ;
Pey, Kin Leong ;
Raghavan, Nagarajan ;
Duenas, Salvador ;
Wang, Tao ;
Xia, Qiangfei ;
Pazos, Sebastian .
ACS NANO, 2021, 15 (11) :17214-17231