A Gromov-Witten Theory for Simple Normal-Crossing Pairs Without Log Geometry

被引:3
作者
Tseng, Hsian-Hua [1 ]
You, Fenglong [2 ]
机构
[1] Ohio State Univ, Dept Math, 100 Math Tower,231 West 18th Ave, Columbus, OH 43210 USA
[2] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
基金
加拿大自然科学与工程研究理事会;
关键词
DOUBLE RAMIFICATION CYCLES; STABLE LOGARITHMIC MAPS;
D O I
10.1007/s00220-023-04656-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a new Gromov-Witten theory relative to simple normal crossing divisors as a limit of Gromov-Witten theory of multi-root stacks. Several structural properties are proved including relative quantum cohomology, Givental formalism, Virasoro constraints (genus zero) and a partial cohomological field theory. Furthermore, we use the degree zero part of the relative quantum cohomology to provide an alternative mirror construction of Gross and Siebert (Intrinsic mirror symmetry, arXiv:1909.07649) and to prove the Frobenius structure conjecture of Gross et al. (Publ Math Inst Hautes & Eacute;tudes Sci 122:65-168, 2015) in our setting.
引用
收藏
页码:803 / 839
页数:37
相关论文
共 38 条
  • [1] Abramovich D., ARXIV
  • [2] Decomposition of degenerate Gromov-Witten invariants
    Abramovich, Dan
    Chen, Qile
    Gross, Mark
    Siebert, Bernd
    [J]. COMPOSITIO MATHEMATICA, 2020, 156 (10) : 2020 - 2075
  • [3] Birational invariance in logarithmic Gromov-Witten theory
    Abramovich, Dan
    Wise, Jonathan
    [J]. COMPOSITIO MATHEMATICA, 2018, 154 (03) : 595 - 620
  • [4] Relative and orbifold Gromov-Witten invariants
    Abramovich, Dan
    Cadman, Charles
    Wise, Jonathan
    [J]. ALGEBRAIC GEOMETRY, 2017, 4 (04): : 472 - 500
  • [5] Abramovich D, 2016, ANN SCUOLA NORM-SCI, V16, P519
  • [6] STABLE LOGARITHMIC MAPS TO DELIGNE-FALTINGS PAIRS II
    Abramovich, Dan
    Chen, Qile
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (03) : 465 - 488
  • [7] Quantum periods, I: Semi-infinite variations of Hodge structures
    Barannikov, S
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (23) : 1243 - 1264
  • [8] Battistella L., ARXIV
  • [9] Quadratic double ramification integrals and the noncommutative KdV hierarchy
    Buryak, Alexandr
    Rossi, Paolo
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 843 - 854
  • [10] Stable logarithmic maps to Deligne-Faltings pairs I
    Chen, Qile
    [J]. ANNALS OF MATHEMATICS, 2014, 180 (02) : 455 - 521