Dithieno[3,2-a:2?,3?-c]phenazine based hole-transporting materials for efficient perovskite solar cells: Effects of donors numbers

被引:7
|
作者
Wang, Zhihui [1 ]
Xu, Chunchen [1 ]
Yang, Zongyuan [1 ]
Zou, Yujie [1 ]
Zhang, Kailong [1 ]
Gao, Ping [1 ,4 ,5 ]
Xu, Weichuan [1 ]
Li, Gongqiang [2 ]
Chen, Jing [1 ]
Liang, Mao [3 ]
机构
[1] Huaiyin Inst Technol, Natl & Local Joint Engn Res Ctr Deep Utilizat Tech, Key Lab Palygorskite Sci & Appl Technol Jiangsu Pr, Huaian 223003, Peoples R China
[2] Nanjing Tech Univ NanjingTech, Inst Adv Mat IAM, 30 South Puzhu Rd, Nanjing 211816, Peoples R China
[3] Tianjin Univ Technol, Dept Appl Chem, Tianjin Key Lab Organ Solar Cells & Photochem Conv, Tianjin 300384, Peoples R China
[4] Nanjing Tech Univ NJ Tech, Key Lab Flexible Elect KLOFE, 5 Xinmofan Rd, Nanjing 210009, Peoples R China
[5] Nanjing Tech Univ NJ Tech, Inst Adv Mat IAM, 5 Xinmofan Rd, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite solar cells; Hole-transporting materials; Dithieno[3; 2-a; 2; 3? -c]phenazine; Donors numbers; Photovoltaic performance; LOW-COST; HIGHLY EFFICIENT; CORE;
D O I
10.1016/j.dyepig.2022.111066
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Incorporation of electron-deficient polycyclic aromatics into molecular skeleton has been proved to be an effective strategy for improving the device performance of organic photovoltaics. In this context, three low-cost hole-transporting materials (HTMs) endowed with dithieno[3,2-a:2 ',3 '-c]phenazine core were successfully syn-thesized and employed for perovskite solar cells (PSCs). A comparative evaluation in relation to the numbers of peripheral donors was systematically investigated by measurement of their photophysical, electrochemical and photovoltaic performance. It is revealed that the low-symmetrical WH04 featuring three triphenylamine (TPA) donors exhibited a deeper HOMO level, a higher hole-transporting capacity and smoother film morphology than the molecules with two or four terminal donors. As a result, the WH04-based PSCs realized the highest power conversion efficiency of 20.52%, accompanied with excellent long-term device stability, which is competitive with spiro-OMeTAD based devices. We believe that molecular engineering of donors numbers is envisioned as an effective strategy for constructing highly efficient D-A-D type HTMs for PSCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Molecularly engineering of truxene-based dopant-free hole-transporting materials for efficient inverted planar perovskite solar cells
    Wang, Baiyue
    Zeng, Qi
    Sun, Zhe
    Xue, Song
    Liang, Mao
    DYES AND PIGMENTS, 2019, 165 : 81 - 89
  • [42] 3D asymmetric carbozole hole transporting materials for perovskite solar cells
    Sheibani, Esmaeil
    Heydari, Mahsa
    Ahangar, Hosein
    Mohammadi, Hajar
    Fard, Hossein Taherian
    Taghavini, Nima
    Samadpour, Mahmoud
    Tajabadi, Fariba
    SOLAR ENERGY, 2019, 189 : 404 - 411
  • [43] Efficient Hole-Transporting Materials with Triazole Core for High-Efficiency Perovskite Solar Cells
    Choi, Hyeju
    Jo, Hyeonjun
    Paek, Sanghyun
    Koh, Kyungkuk
    Ko, Haye Min
    Lee, Jae Kwan
    Ko, Jaejung
    CHEMISTRY-AN ASIAN JOURNAL, 2016, 11 (04) : 548 - 554
  • [44] 3D Conjugated Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells and Modules
    Zhang, Xianfu
    Liu, Xuepeng
    Ding, Yunxuan
    Ding, Bin
    Shi, Pengju
    Syzgantseva, Olga A.
    Syzgantseva, Maria A.
    Fei, Zhaofu
    Chen, Jianlin
    Rahim, Ghadari
    Han, Mingyuan
    Zhang, Kai
    Zhou, Ying
    Brooks, Keith G.
    Wang, Rui
    Sun, Licheng
    Dyson, Paul J.
    Dai, Songyuan
    Nazeeruddin, Mohammad Kahaj Khaja
    Ding, Yong
    ADVANCED MATERIALS, 2024, 36 (28)
  • [45] Phenothiazine-Based Hole-Transporting Materials toward Eco-friendly Perovskite Solar Cells
    Salunke, Jagadish
    Guo, Xing
    Lin, Zhenhua
    Vale, Joao R.
    Candeias, Nuno R.
    Nyman, Mathias
    Dahlstrom, Staffan
    Osterbacka, Ronald
    Priimagi, Arri
    Chang, Jingjing
    Vivo, Paola
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3021 - 3027
  • [46] Molecular engineering of novel dithiophene-fused hole-transporting materials for highly efficient perovskite solar cells
    Zhu, Wenjing
    Qu, He
    Qin, Ming
    Dong, Hao
    Zhou, Xin
    DYES AND PIGMENTS, 2023, 219
  • [47] A Review on Solution-Processable Dopant-Free Small Molecules as Hole-Transporting Materials for Efficient Perovskite Solar Cells
    Zhang, Luozheng
    Zhou, Xianyong
    Liu, Chang
    Wang, Xingzhu
    Xu, Baomin
    SMALL METHODS, 2020, 4 (09)
  • [48] Benzodithiophene-Based Copolymers as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells
    Vineetha, Pookalavan Karicherry
    Nair, Pratheesh Viswambharan
    Sruthy, Somanathan Pillai
    Anas, Saithalavi
    ENERGY TECHNOLOGY, 2024, 12 (08)
  • [49] Influence of Nonfused Cores on the Photovoltaic Performance of Linear Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells
    Wu, Yungen
    Wang, Zhihui
    Liang, Mao
    Cheng, Hua
    Li, Mengyuan
    Liu, Liyuan
    Wang, Baiyue
    Wu, Jinhua
    Ghimire, Raju Prasad
    Wang, Xuda
    Sun, Zhe
    Xue, Song
    Qiao, Qiquan
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) : 17883 - 17895
  • [50] [2.2]Paracyclophane-based hole-transporting materials for perovskite solar cells
    Lin, Yin-Sheng
    Li, Hsin
    Yu, Wen-Sheng
    Wang, Szu-Tan
    Chang, Yi-Min
    Liu, Tsung-Hsin
    Li, Shao-Sian
    Watanabe, Motonori
    Chiu, Hsiao-Han
    Wang, Di-Yan
    Chang, Yuan Jay
    JOURNAL OF POWER SOURCES, 2021, 491 (491)