Dithieno[3,2-a:2?,3?-c]phenazine based hole-transporting materials for efficient perovskite solar cells: Effects of donors numbers

被引:7
|
作者
Wang, Zhihui [1 ]
Xu, Chunchen [1 ]
Yang, Zongyuan [1 ]
Zou, Yujie [1 ]
Zhang, Kailong [1 ]
Gao, Ping [1 ,4 ,5 ]
Xu, Weichuan [1 ]
Li, Gongqiang [2 ]
Chen, Jing [1 ]
Liang, Mao [3 ]
机构
[1] Huaiyin Inst Technol, Natl & Local Joint Engn Res Ctr Deep Utilizat Tech, Key Lab Palygorskite Sci & Appl Technol Jiangsu Pr, Huaian 223003, Peoples R China
[2] Nanjing Tech Univ NanjingTech, Inst Adv Mat IAM, 30 South Puzhu Rd, Nanjing 211816, Peoples R China
[3] Tianjin Univ Technol, Dept Appl Chem, Tianjin Key Lab Organ Solar Cells & Photochem Conv, Tianjin 300384, Peoples R China
[4] Nanjing Tech Univ NJ Tech, Key Lab Flexible Elect KLOFE, 5 Xinmofan Rd, Nanjing 210009, Peoples R China
[5] Nanjing Tech Univ NJ Tech, Inst Adv Mat IAM, 5 Xinmofan Rd, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite solar cells; Hole-transporting materials; Dithieno[3; 2-a; 2; 3? -c]phenazine; Donors numbers; Photovoltaic performance; LOW-COST; HIGHLY EFFICIENT; CORE;
D O I
10.1016/j.dyepig.2022.111066
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Incorporation of electron-deficient polycyclic aromatics into molecular skeleton has been proved to be an effective strategy for improving the device performance of organic photovoltaics. In this context, three low-cost hole-transporting materials (HTMs) endowed with dithieno[3,2-a:2 ',3 '-c]phenazine core were successfully syn-thesized and employed for perovskite solar cells (PSCs). A comparative evaluation in relation to the numbers of peripheral donors was systematically investigated by measurement of their photophysical, electrochemical and photovoltaic performance. It is revealed that the low-symmetrical WH04 featuring three triphenylamine (TPA) donors exhibited a deeper HOMO level, a higher hole-transporting capacity and smoother film morphology than the molecules with two or four terminal donors. As a result, the WH04-based PSCs realized the highest power conversion efficiency of 20.52%, accompanied with excellent long-term device stability, which is competitive with spiro-OMeTAD based devices. We believe that molecular engineering of donors numbers is envisioned as an effective strategy for constructing highly efficient D-A-D type HTMs for PSCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Truxene-based Hole-transporting Materials for Perovskite Solar Cells
    Lin Lin-Lin
    Tu Yong-Guang
    Tang Chang-Quan
    Ma Yun-Long
    Chen Shan-Ci
    Yin Zhi-Gang
    Wei Jia-Jun
    Zheng Qing-Dong
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35 (10) : 1517 - 1524
  • [22] Truxene-based Hole-transporting Materials for Perovskite Solar Cells
    林琳琳
    涂用广
    汤昌泉
    马云龙
    陈善慈
    尹志刚
    魏佳骏
    郑庆东
    结构化学, 2016, 35 (10) : 1517 - 1524
  • [23] Effects of Heteroatom and Extending the Conjugation on Linear Hole-Transporting Materials for Perovskite Solar Cells
    Wang, Ying
    Wu, Nan
    Zhang, Xianfu
    Liu, Xuepeng
    Han, Mingyuan
    Ghadari, Rahim
    Guo, Fuling
    Ding, Yong
    Cai, Molang
    Dai, Songyuan
    ACS APPLIED ENERGY MATERIALS, 2022, : 10553 - 10561
  • [24] Poly(3-hexylthiophene)/Gold Nanorod Composites as Efficient Hole-Transporting Materials for Perovskite Solar Cells
    Wang, Junjie
    Hu, Qikun
    Li, Minzhang
    Shan, Haiquan
    Feng, Yaomiao
    Xu, Zong-Xiang
    SOLAR RRL, 2020, 4 (06)
  • [25] Corannulene-based hole-transporting material for efficient and stable perovskite solar cells
    An, Ming-Wei
    Wu, Bao-Shan
    Wang, Shun
    Chen, Zuo-Chang
    Su, Yin
    Deng, Lin-Long
    Li, Shu-Hui
    Nan, Zi-Ang
    Tian, Han-Rui
    Liu, Xiao-Lin
    Yun, Da-Qin
    Zhang, Qianyan
    Xie, Su-Yuan
    Zheng, Lan-Sun
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (12):
  • [26] Diaryl ketone-based hole-transporting materials for efficient perovskite solar cells
    Zhu, Linna
    Xu, Jing
    Shan, Yahan
    Zhong, Cheng
    Tang, Xiaosheng
    Long, Dan
    Zhang, Yongping
    Wu, Fei
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (11) : 3226 - 3230
  • [27] Dopant-free hole-transporting materials featuring intramolecular π-π interactions for efficient and stable perovskite solar cells
    Gai, Xiaofan
    Bao, Huayu
    Gu, Cancan
    Zhang, Zhenhu
    Li, Jianye
    Cao, Xiaohui
    Wang, Shirong
    Li, Xianggao
    Yin, Guohui
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [28] Recent progress in organic hole-transporting materials with 4-anisylamino-based end caps for efficient perovskite solar cells
    Xu, Xiao-Peng
    Li, Shi-Yang
    Li, Ying
    Peng, Qiang
    RARE METALS, 2021, 40 (07) : 1669 - 1690
  • [29] Dithieno[3,2-b:2′,3′-d]pyrrole-based hole transport materials for perovskite solar cells with efficiencies over 18%
    Mabrouk, Sally
    Zhang, Mengmeng
    Wang, Zhihui
    Liang, Mao
    Bahrami, Behzad
    Wu, Yungen
    Wu, Jinhua
    Qiao, Qiquan
    Yang, Shangfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) : 7950 - 7958
  • [30] Dopant-Free Hole-Transporting Materials for Stable and Efficient Perovskite Solar Cells
    Paek, Sanghyun
    Qin, Peng
    Lee, Yonghui
    Cho, Kyung Taek
    Gao, Peng
    Grancini, Giulia
    Oveisi, Emad
    Gratia, Paul
    Rakstys, Kasparas
    Al-Muhtaseb, Shaheen A.
    Ludwig, Christian
    Ko, Jaejung
    Nazeeruddin, Mohammad Khaja
    ADVANCED MATERIALS, 2017, 29 (35)