Some homological properties of Borel type ideals

被引:3
作者
Herzog, Jurgen [1 ]
Moradi, Somayeh [2 ,5 ]
Rahimbeigi, Masoomeh [3 ]
Zhu, Guangjun [4 ]
机构
[1] Univ Duisburg Essen, Fak Math, Essen, Germany
[2] Ilam Univ, Sch Sci, Dept Math, Ilam, Iran
[3] Univ Kurdistan, Dept Math, Sanandaj, Iran
[4] Soochow Univ, Sch Math Sci, Suzhou, Peoples R China
[5] Ilam Univ, Sch Sci, Dept Math, POB 69315-516, Ilam, Iran
关键词
Analytic spread; homological shift ideal; k-Borel ideal; linear quotient; multiplicity; t-spread Veronese ideal; Primary; Secondary; BETTI NUMBERS; RESOLUTIONS; POWERS;
D O I
10.1080/00927872.2022.2137521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study ideals of Borel type, including k-Borel ideals and t-spread Veronese ideals. We determine their free resolutions and their homological shift ideals. The multiplicity and the analytic spread of equigenerated squarefree principal Borel ideals are computed. For the multiplicity, the result is given under an additional assumption which is always satisfied for squarefree principal Borel ideals. These results are used to analyze the behavior of height, multiplicity and analytic spread of the homological shift ideals HSj(I) as functions of j, when I is an equigenerated squarefree Borel ideal.
引用
收藏
页码:1517 / 1531
页数:15
相关论文
共 24 条
  • [1] Powers of t-spread principal Borel ideals
    Andrei, Claudia
    Ene, Viviana
    Lajmiri, Bahareh
    [J]. ARCHIV DER MATHEMATIK, 2019, 112 (06) : 587 - 597
  • [2] Squarefree lexsegment ideals
    Aramova, A
    Herzog, J
    Hibi, T
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (02) : 353 - 378
  • [3] LINEAR QUOTIENTS AND MULTIGRADED SHIFTS OF BOREL IDEALS
    Bayati, Shamila
    Jahani, Iman
    Taghipour, Nadiya
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (01) : 48 - 57
  • [4] Multigraded shifts of matroidal ideals
    Bayati, Shamila
    [J]. ARCHIV DER MATHEMATIK, 2018, 111 (03) : 239 - 246
  • [5] A CRITERION FOR DETECTING M-REGULARITY
    BAYER, D
    STILLMAN, M
    [J]. INVENTIONES MATHEMATICAE, 1987, 87 (01) : 1 - 11
  • [6] UPPER-BOUNDS FOR THE BETTI NUMBERS OF A GIVEN HILBERT FUNCTION
    BIGATTI, AM
    [J]. COMMUNICATIONS IN ALGEBRA, 1993, 21 (07) : 2317 - 2334
  • [7] ON MULTIGRADED RESOLUTIONS
    BRUNS, W
    HERZOG, J
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 118 : 245 - 257
  • [8] Powers of Principal Q-Borel ideals
    Camps-Moreno, Eduardo
    Kohne, Craig
    Sarmiento, Eliseo
    Van Tuyl, Adam
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (03): : 633 - 652
  • [9] Restricted classes of veronese type ideals and algebras
    Dinu, Rodica
    Herzog, Jurgen
    Qureshi, Ayesha Asloob
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (01) : 173 - 197
  • [10] Dinu R, 2020, OSAKA J MATH, V57, P935