Study of several probability distribution functions for the Klein-Kramers equation

被引:0
作者
Li, Yaxi [1 ]
Kai, Yue [1 ]
机构
[1] Shanghai Univ Engn Sci, Ctr Intelligent Comp & Appl Stat, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2024年 / 38卷 / 24期
关键词
Klein-Kramers equation; probability distribution function; dynamic properties; variable separation method; DIFFUSION; DYNAMICS; MOTION; SOLITONS; FORCE; FIELD;
D O I
10.1142/S0217984924502129
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we take variable separation method to study Klein-Kramers (KK) equation. By choosing different eigenvalues and noise functions, we can get different probability density functions (PDFs) of KK equation. These PDFs contain not only normal distributions but also other distributions that correspond to anomalous diffusion phenomena. For example, power-law distribution, truncated Cauchy-Lorentz distribution, Weibull distribution, log-logistic distribution, Gamma distribution. We also show the 3D and 2D profiles of these PDFs to analyze the corresponding dynamic properties and illustrate the possible practical applications of these results. In addition, we also find some exact solutions that are not PDFs. They are also listed to ensure the completeness of the results and to illustrate the potential applications of these exact solutions.
引用
收藏
页数:13
相关论文
共 44 条
  • [1] Anomalous Dynamical Behavior of Freestanding Graphene Membranes
    Ackerman, M. L.
    Kumar, P.
    Neek-Amal, M.
    Thibado, P. M.
    Peeters, F. M.
    Singh, Surendra
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (12)
  • [2] [Anonymous], 1996, Fokker-planck equation
  • [3] Bouchaud J. P., 1990, PHYS REP REV SEC PHY, V127, P195
  • [4] Fractional generalization of Fick's law:: A microscopic approach
    Calvo, I.
    Sanchez, R.
    Carreras, B. A.
    van Milligen, B. Ph.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (23)
  • [5] Stochastic problems in physics and astronomy
    Chandrasekhar, S
    [J]. REVIEWS OF MODERN PHYSICS, 1943, 15 (01) : 0001 - 0089
  • [6] Generating constrained random data with uniform distribution
    Claessen, Koen
    Duregard, Jonas
    Palka, Michal H.
    [J]. JOURNAL OF FUNCTIONAL PROGRAMMING, 2015, 25
  • [7] Conrad K., 2004, ENTROPY-SWITZ, V6, P10
  • [9] Fa K. S., 2013, J STAT MECH-THEORY E, V2013, P09021
  • [10] EXACT SOLUTION OF THE KRAMERS PROBLEM IN PERIODIC POTENTIALS
    FERRANDO, R
    SPADACINI, R
    TOMMEI, GE
    [J]. PHYSICAL REVIEW A, 1992, 46 (02): : R699 - R702