Complete signed graphs with largest maximum or smallest minimum eigenvalue

被引:3
作者
Ghorbani, Ebrahim [1 ,2 ]
Majidi, Arezoo [1 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16765-3381, Tehran 163151618, Iran
[2] Univ Hamburg, Dept Math, Bundesstr 55 Geomatikum, D-20146 Hamburg, Germany
关键词
Signed graph; Seidel matrix; Index; Minimum eigenvalue; NUMBER;
D O I
10.1016/j.disc.2023.113860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with extremal eigenvalues of the adjacency matrices of complete signed graphs. The complete signed graphs with maximal index (i.e. the largest eigenvalue) with n vertices and m <= ln(2)/4j negative edges have been already determined. We address the remaining case by characterizing those with m > ln(2)/4j negative edges. We also identify the unique signed graph with maximal index among complete signed graphs whose negative edges induce a tree of diameter at least d for any given d. This extends a recent result by Li, Lin, and Meng [Discrete Math. 346 (2023), 113250] who established the same result for d = 2. Finally, we prove that the smallest minimum eigenvalue of complete signed graphs with n vertices whose negative edges induce a tree is -root (n)/(2) -1 -1 + O(n1). (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 1978, Annals of Discrete Mathematics
[2]  
Belardo F., 2018, Art Discrete Appl. Math., V1
[3]   Lifts, discrepancy and nearly optimal spectral cap [J].
Bilu, Yonatan ;
Linial, Nathan .
COMBINATORICA, 2006, 26 (05) :495-519
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]  
Chvatal V., 1977, Ann. Discret. Math, V1, P145
[6]   On a conjecture of V. Nikiforov [J].
Csikvari, Peter .
DISCRETE MATHEMATICS, 2009, 309 (13) :4522-4526
[7]   Signed graphs with maximal index [J].
Ghorbani, Ebrahim ;
Majidi, Arezoo .
DISCRETE MATHEMATICS, 2021, 344 (08)
[8]   Cographs: Eigenvalues and Dilworth number [J].
Ghorbani, Ebrahim .
DISCRETE MATHEMATICS, 2019, 342 (10) :2797-2803
[9]  
Harary F., 1979, Riv. Mat. Sci. Econom. Social., V2, P169
[10]   Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture [J].
Huang, Hao .
ANNALS OF MATHEMATICS, 2019, 190 (03) :949-955