Machine learning-based feature prediction of convergence zones in ocean front environments

被引:4
|
作者
Xu, Weishuai [1 ]
Zhang, Lei [2 ]
Wang, Hua [2 ]
机构
[1] Dalian Naval Acad, 5 Student Team, Dalian, Liaoning, Peoples R China
[2] Dalian Naval Acad, Dept Mil Oceanog & Hydrog & Cartog, Dalian, Liaoning, Peoples R China
关键词
convergence zone; machine learning; Kuroshio extension front; environmental feature extraction; multiple regression prediction; KUROSHIO; SYSTEM; STATE;
D O I
10.3389/fmars.2024.1337234
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The convergence zone holds significant importance in deep-sea underwater acoustic propagation, playing a pivotal role in remote underwater acoustic detection and communication. Despite the adaptability and predictive power of machine learning, its practical application in predicting the convergence zone remains largely unexplored. This study aimed to address this gap by developing a high-resolution ocean front-based model for convergence zone prediction. Out of 24 machine learning algorithms tested through K-fold cross-validation, the multilayer perceptron-random forest hybrid demonstrated the highest accuracy, showing its superiority in predicting the convergence zone within a complex ocean front environment. The research findings emphasized the substantial impact of ocean fronts on the convergence zone's location concerning the sound source. Specifically, they highlighted that in relatively cold (or warm) water, the intensity of the ocean front significantly influences the proximity (or distance) of the convergence zone to the sound source. Furthermore, among the input features, the turning depth emerged as a crucial determinant, contributing more than 25% to the model's effectiveness in predicting the convergence zone's distance. The model achieved an accuracy of 82.43% in predicting the convergence zone's distance with an error of less than 1 km. Additionally, it attained a 77.1% accuracy in predicting the convergence zone's width within a similar error range. Notably, this prediction model exhibits strong performance and generalizability, capable of discerning evolving trends in new datasets when cross-validated using in situ observation data and information from diverse sea areas.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Machine Learning-based RSSI Prediction in Factory Environments
    Webber, Julian
    Suga, Norisato
    Ano, Susumu
    Jou, Yafei
    Mehbodniya, Abolfazl
    Higashimori, Toshihide
    Yano, Kazuto
    Suzuki, Yoshinori
    PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 195 - 200
  • [2] Machine Learning-Based Radio Coverage Prediction in Urban Environments
    Mohammadjafari, Sanaz
    Roginsky, Sophie
    Kavurmacioglu, Emir
    Cevik, Mucahit
    Ethier, Jonathan
    Bener, Ayse Basar
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04): : 2117 - 2130
  • [3] Machine learning-based genetic feature identification and fatigue life prediction
    Zhou, Kun
    Sun, Xingyue
    Shi, Shouwen
    Song, Kai
    Chen, Xu
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (09) : 2524 - 2537
  • [4] Recursive Feature Elimination for Machine Learning-based Landslide Prediction Models
    Munasinghe, Kusala
    Karunanayake, Piyumika
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 126 - 129
  • [5] Machine Learning-based Prediction and Analysis of Air and Noise Pollution in Urban Environments
    Vijayalakshmi, A.
    Abishek, Ebenezer B.
    Rubi, Jaya
    Dhivya, Josephin Arockia
    Kavidoss, K.
    Ram, Aakas A. S.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1080 - 1085
  • [6] A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction
    Pudjihartono, Nicholas
    Fadason, Tayaza
    Kempa-Liehr, Andreas W.
    O'Sullivan, Justin M.
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [7] Machine learning-based prediction of tree crown development in competitive urban environments
    Yazdi, Hadi
    Moser-Reischl, Astrid
    Roetzer, Thomas
    Petzold, Frank
    Ludwig, Ferdinand
    URBAN FORESTRY & URBAN GREENING, 2024, 101
  • [8] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [9] Machine Learning-Based Feature Extraction and Selection
    Ruano-Ordas, David
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [10] Machine Learning-Based Front Detection in Central Europe
    Bochenek, Bogdan
    Ustrnul, Zbigniew
    Wypych, Agnieszka
    Kubacka, Danuta
    ATMOSPHERE, 2021, 12 (10)