Development of anti-PD-L1 antibody based on structure prediction of AlphaFold2

被引:6
作者
Du, Kun [1 ,2 ,3 ]
Huang, He [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin, Peoples R China
[2] Tianjin Univ, Frontiers Sci Ctr Synthet Biol, Minist Educ, Tianjin, Peoples R China
[3] Tianjin Univ, Key Lab Syst Bioengn, Minist Educ, Tianjin, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
关键词
AlphaFold2; artificial intelligence; antibody; programmed death-ligand 1; programmed cell death protein 1; cancer immunotherapy; B7; FAMILY; IMMUNOTHERAPY; BLOCKADE; COSTIMULATION; PATHWAYS; LIGANDS; SERVER; CELLS;
D O I
10.3389/fimmu.2023.1275999
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Accurate structural information plays a crucial role in comprehending biological processes and designing drugs. Indeed, the remarkable precision of the AlphaFold2 has facilitated significant advancements in predicting molecular structures, encompassing antibodies and antigens. This breakthrough has paved the way for rational drug design, ushering in new possibilities in the field of pharmaceutical development. Within this study, performing analysis and humanization guided by the structures predicted by AlphaFold2. Notably, the resulting humanized antibody, h3D5-hIgG1, demonstrated exceptional binding affinity to the PD-L1 protein. The KD value of parental antibody 3D5-hIgG1 was increased by nearly 7 times after humanization. Both h3D5-hIgG1 and 3D5-hIgG1 bound to cells expressing human PD-L1 with EC50 values of 5.13 and 9.92nM, respectively. Humanization resulted in a twofold increase in the binding capacity of the antibody, with h3D5-hIgG1 exhibiting superior performance compared to the parental antibody 3D5-hIgG1. Furthermore, h3D5-hIgG1 promoted cytokine secretion of T cells, and significantly suppressed MC38-hPD-L1 tumor growth. This study highlights the potential for artificial intelligence-assisted drug development, which is poised to become a prominent trend in the future.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Improving homology modeling from low-sequence identity templates in Rosetta: A case study in GPCRs [J].
Bender, Brian Joseph ;
Marlow, Brennica ;
Meiler, Jens .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (10)
[2]   AlphaFold2 protein structure prediction: Implications for drug discovery [J].
Borkakoti, Neera ;
Thornton, Janet M. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 78
[3]   Blockade of programmed death-1 Ligands on dendritic cells enhances T cell activation and cytokine production [J].
Brown, JA ;
Dorfman, DM ;
Ma, FR ;
Sullivan, EL ;
Munoz, O ;
Wood, CR ;
Greenfield, EA ;
Freeman, GJ .
JOURNAL OF IMMUNOLOGY, 2003, 170 (03) :1257-1266
[4]   The B7 family of ligands and its receptors: New pathways for costimulation and inhibition of immune responses [J].
Carreno, BM ;
Collins, M .
ANNUAL REVIEW OF IMMUNOLOGY, 2002, 20 :29-53
[5]   The Proteome Folding Project: Proteome-scale prediction of structure and function [J].
Drew, Kevin ;
Winters, Patrick ;
Butterfoss, Glenn L. ;
Berstis, Viktors ;
Uplinger, Keith ;
Armstrong, Jonathan ;
Riffle, Michael ;
Schweighofer, Erik ;
Bovermann, Bill ;
Goodlett, David R. ;
Davis, Trisha N. ;
Shasha, Dennis ;
Malmstroem, Lars ;
Bonneau, Richard .
GENOME RESEARCH, 2011, 21 (11) :1981-1994
[6]   Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints [J].
Greener, Joe G. ;
Kandathil, Shaun M. ;
Jones, David T. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   A universal in silico V(D)J recombination strategy for developing humanized monoclonal antibodies [J].
Hsieh, Yuan-Chin ;
Liao, Jun-Min ;
Chuang, Kuo-Hsiang ;
Ho, Kai-Wen ;
Hong, Shih-Ting ;
Liu, Hui-Ju ;
Huang, Bo-Cheng ;
Chen, I-Ju ;
Liu, Yen-Ling ;
Wang, Jaw-Yuan ;
Tsai, Hsiang-Lin ;
Su, Yu-Cheng ;
Wang, Yen-Tseng ;
Cheng, Tian-Lu .
JOURNAL OF NANOBIOTECHNOLOGY, 2022, 20 (01)
[8]   Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade [J].
Iwai, Y ;
Ishida, M ;
Tanaka, Y ;
Okazaki, T ;
Honjo, T ;
Minato, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12293-12297
[9]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[10]   Critical assessment of methods of protein structure prediction (CASP)-Round XIII [J].
Kryshtafovych, Andriy ;
Schwede, Torsten ;
Topf, Maya ;
Fidelis, Krzysztof ;
Moult, John .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2019, 87 (12) :1011-1020