Enhancing Drought Tolerance and Fruit Characteristics in Tomato through Exogenous Melatonin Application

被引:7
|
作者
Huang, Qian [1 ,2 ,3 ]
Yan, Haijing [1 ,2 ,3 ]
You, Mingyuan [1 ,2 ,3 ]
Duan, Jinye [1 ,2 ,3 ]
Chen, Manling [1 ,2 ,3 ]
Xing, Yingjin [1 ,2 ,3 ]
Hu, Xiaohui [1 ,2 ,3 ]
Li, Xiaojing [1 ,2 ,3 ]
机构
[1] Northwest A&F Univ, Coll Hort, Xianyang 712100, Peoples R China
[2] Minist Agr, Key Lab Protected Hort Engn Northwest, Xianyang 712100, Peoples R China
[3] Shaanxi Protected Agr Res Ctr, Xianyang 712100, Peoples R China
关键词
abscisic acid; melatonin; root morphology; tomato (Solanum lycopersicum); water stress; yield and quality; ABSCISIC-ACID; ANTIOXIDANT SYSTEMS; ROOT-GROWTH; STRESS TOLERANCE; PLANT-GROWTH; L; PHOTOSYNTHESIS; ACCUMULATION; INVOLVEMENT; CHLOROPHYLL;
D O I
10.3390/horticulturae9101083
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Drought stress not only affects the growth and development of tomato seedlings but also leads to a significant decrease in tomato fruit yield. Previous studies have shown that melatonin plays a crucial role in regulating plant tolerance to drought stress. The present study was conducted to investigate the impact of exogenous melatonin on the growth and development of tomato seedlings under drought stress, as well as its potential in improving fruit yield and quality. Our findings demonstrate that drought stress strongly suppressed growth and biomass accumulation, reduced photosynthetic pigments, and inhibited photosynthesis. Conversely, melatonin treatment led to a notable increase in plant height, stem diameter, aboveground biomass, and relative water content of tomato seedlings by 16.67%, 7.39%, 10.58%, and 13.31%, respectively, compared to the drought treatment. Moreover, the chlorophyll content increased by 40.51%, and the net photosynthetic rate increased by 1.2 times. Furthermore, the application of melatonin under drought stress resulted in a decrease in osmoregulation substances, reduced accumulation of reactive oxygen species, and enhanced activity of antioxidant enzymes in tomato seedlings. Exogenous melatonin was also found to inhibit the expression of abscisic-acid-synthesis-related genes, resulting in a reduction in the abscisic acid content in tomato seedlings. Additionally, it significantly increased the root length, root surface area, and root vitality of the plants. When compared to drought treatment, tomato plants treated with melatonin exhibited a 61.92% increase in average yield and a 37.79% increase in fruit weight per plant. Furthermore, the organic acid content decreased by 23.77%, while soluble solids and sugars increased by 15.07% and 35.49%, respectively. These findings suggest that exogenous melatonin effectively alleviates the inhibition of photosynthesis and growth in tomato seedlings under drought stress. It achieves this by regulating the content of osmotic stress substances and the activity of antioxidant enzymes, thus enhancing the resistance of tomato seedlings to drought stress. Moreover, melatonin regulates root growth by mediating the biosynthesis of endogenous ABA, thereby improving the absorption and utilization efficiency of water and nutrients in plants. Consequently, it enhances tomato fruit yield and quality under drought stress.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Exogenous melatonin improves seedling health index and drought tolerance in tomato
    Jianlong Liu
    Weixiang Wang
    Liying Wang
    Yan Sun
    Plant Growth Regulation, 2015, 77 : 317 - 326
  • [2] Exogenous melatonin improves seedling health index and drought tolerance in tomato
    Liu, Jianlong
    Wang, Weixiang
    Wang, Liying
    Sun, Yan
    PLANT GROWTH REGULATION, 2015, 77 (03) : 317 - 326
  • [3] The beneficial effects of exogenous melatonin on tomato fruit properties
    Liu, Jianlong
    Zhang, Ruimin
    Sun, Yunkuo
    Liu, Zeyu
    Jin, Wen
    Sun, Yan
    SCIENTIA HORTICULTURAE, 2016, 207 : 14 - 20
  • [4] Enhancing drought tolerance in okra through melatonin application: A comprehensive study of physiological, biochemical and metabolic responses
    Gopal, Aswathi
    Veerasamy, Ravichandran
    Dhashnamurthi, Vijayalakshmi
    Alagarsamy, Senthil
    Loganathan, Arul
    Sengodan, Radhamani
    Ramasamy, Jagadeeswaran
    Mottaiyan, Pitchaimuthu
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2024, 52 (04)
  • [5] Enhancing drought stress tolerance in Camelina (Camelina sativa L.) through exogenous application of potassium
    Bukhari, Muhammad Adnan
    Yousaf, Muhammad
    Ahmad, Zahoor
    Rafay, Muhammad
    Shah, Adnan Noor
    Abbas, Asad
    Shah, Anis Ali
    Javed, Talha
    Afzal, Muhammad
    Ali, Sikandar
    Abdullah, Mustafa I. B.
    PHYSIOLOGIA PLANTARUM, 2022, 174 (05)
  • [6] ENHANCING SALT TOLERANCE IN MELON BY EXOGENOUS APPLICATION OF MELATONIN AND CA2+
    Wu, Yan
    Gao, Qinghai
    Huang, Shoucheng
    Jia, Shuangshuang
    PAKISTAN JOURNAL OF BOTANY, 2019, 51 (03) : 781 - 787
  • [7] Individual and combined exogenous application of melatonin and methyl Jasmonate confer salinity stress tolerance in tomato by enhancing antioxidants defense system
    Hamidian, Mohammad
    Kazemeini, Seyed Abdolreza
    Dehnavi, Mohsen Movahhedi
    Ramezanian, Asghar
    Jahromie, Mohammad Reza Mottaghi
    Farsijani, Parnian
    Iranshahi, Reza
    Mohebi, Parisa
    Hekmat, Mobina Fereshteh
    Hassani, Mohammad
    Izadi, Mahmoud
    Mastinu, Andrea
    SCIENTIA HORTICULTURAE, 2025, 342
  • [8] Enhancing salt tolerance in rice genotypes through exogenous melatonin application by modulating growth patterns and antistress agents
    Ubaidillah, Mohammad
    Farooq, Muhammad
    Kim, Kyung-Min
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Application of Exogenous Melatonin Improves Tomato Fruit Quality by Promoting the Accumulation of Primary and Secondary Metabolites
    Dou, Jianhua
    Wang, Jie
    Tang, Zhongqi
    Yu, Jihua
    Wu, Yue
    Liu, Zeci
    Wang, Junwen
    Wang, Guangzheng
    Tian, Qiang
    FOODS, 2022, 11 (24)
  • [10] Exogenous melatonin enhances salt stress tolerance in tomato seedlings
    Altaf, M. A.
    Shahid, R.
    Ren, M. X.
    Naz, S.
    Altaf, M. M.
    Qadir, A.
    Anwar, M.
    Shakoor, A.
    Hayat, F.
    BIOLOGIA PLANTARUM, 2020, 64 : 604 - 615