An Ongoing Futuristic Career of Metal-Organic Frameworks and Ionic Liquids, A Magical Gateway to Capture CO2; A Critical Review

被引:15
|
作者
Ali, Syed Awais [1 ]
Khan, Asmat Ullah [2 ]
Ul Mulk, Waqad [1 ]
Khan, Haris [1 ]
Shah, Syed Nasir [3 ]
Zahid, Afrah [4 ]
Habib, Khairul [1 ]
Shah, Mansoor Ul Hassan [5 ]
Othman, Mohd Hafiz Dzarfan [2 ]
Rahman, Saidur [6 ,7 ]
机构
[1] Univ Teknol PETRONAS, Dept Mech Engn, Bandar Seri Iskandar 32610, Perak Darul Rid, Malaysia
[2] Univ Teknol Malaysia UTM, Fac Chem & Energy Engn, Adv Membrane Technol Res Ctr AMTEC, Skudai 81310, Johor Bahru, Malaysia
[3] Dubai Elect & Water Author DEWA, Ctr Res & Dev, Dubai, U Arab Emirates
[4] Women Univ, Dept Chem, Multan 54500, Pakistan
[5] Univ Engn & Technol, Fac Mech Chem & Ind Engn, Dept Chem Engn, Peshawar 25120, Pakistan
[6] Sunway Univ, Sch Engn & Technol, Res Ctr Nanomat & Energy Technol RCNMET, Petaling Jaya 47500, Malaysia
[7] Univ Lancaster, Sch Engn, Lancaster LA1 4YW, England
关键词
MIXED-MATRIX MEMBRANES; CARBON-DIOXIDE CAPTURE; POST-SYNTHETIC MODIFICATION; GAS SEPARATION PERFORMANCE; PRESSURE PHASE-BEHAVIOR; CU-BTC; NATURAL-GAS; REMARKABLE ADSORBENTS; HIGHLY EFFICIENT; GRAPHENE OXIDE;
D O I
10.1021/acs.energyfuels.3c02377
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Carbon capture and storage (CCS) technologies are the "knight in shining armor" that can save humanity from burnout in the longer term, minimizing damage from CO2 emissions by keeping them out of the atmosphere. Metal-organic frameworks (MOFs) have received a promising career for CO2 capture due to their high porosity, surface area, excellent metal-to-ligand interaction, and good affinity to capture CO2 molecules. On the other hand, Ionic liquids (ILs) as emerging solvents have reported a significant influence on CO2 solubility due to their wide range of tunability in the selection of a variety of cations and anions along with the advantage of nonvolatility, high thermal stability, and nonflammability. The current Review highlights the recent progress and ongoing careers of employing MOFs and ILs in carbon capture technologies before their commercialization on a large scale. A brief overview of CO2 capturing using MOFs and ILs is given under the influence of their possible functionalization to enhance their CO2 separation. Information on the possible integration of MOFs-ILs as a composite system or membrane-based gas separation is also presented in detail. The integration has a high potential to capture CO2 while minimizing the unit operation costs for a stable, efficient, and smooth industrial gas separation operation. Present work attempts to link the chemistry of MOF and IL and their successful hybridization (MOF-IL composite) to process the economics for CO2 capture.
引用
收藏
页码:15394 / 15428
页数:35
相关论文
共 50 条
  • [1] Advanced strategies in Metal-Organic Frameworks for CO2 Capture and Separation
    Usman, Muhammad
    Iqbal, Naseem
    Noor, Tayyaba
    Zaman, Neelam
    Asghar, Aisha
    Abdelnaby, Mahmoud M.
    Galadima, Ahmad
    Helal, Aasif
    CHEMICAL RECORD, 2022, 22 (07)
  • [2] The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion
    Trickett, Christopher A.
    Helal, Aasif
    Al-Maythalony, Bassem A.
    Yamani, Zain H.
    Cordova, Kyle E.
    Yaghi, Omar M.
    NATURE REVIEWS MATERIALS, 2017, 2 (08):
  • [3] Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study
    Xue, Wenjuan
    Li, Zhengjie
    Huang, Hongliang
    Yang, Qingyuan
    Liu, Dahuan
    Xu, Qing
    Zhong, Chongli
    CHEMICAL ENGINEERING SCIENCE, 2016, 140 : 1 - 9
  • [4] Synthesis strategies of metal-organic frameworks for CO2 2 capture
    Sun, Meng
    Wang, Xiaokang
    Gao, Fei
    Xu, Mingming
    Fan, Weidong
    Xu, Ben
    Sun, Daofeng
    MICROSTRUCTURES, 2023, 3 (04):
  • [5] Progress in adsorption-based CO2 capture by metal-organic frameworks
    Liu, Jian
    Thallapally, Praveen K.
    McGrail, B. Peter
    Brown, Daryl R.
    Liu, Jun
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2308 - 2322
  • [6] Review on applications of metal-organic frameworks for CO2 capture and the performance enhancement mechanisms
    Li, Lirong
    Jung, Han Sol
    Lee, Jae Won
    Kang, Yong Tae
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 162
  • [7] A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture
    Christensen, Charlotte Skjold Qvist
    Hansen, Nicholas
    Motadayen, Mahboubeh
    Lock, Nina
    Henriksen, Martin Lahn
    Quinson, Jonathan
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2025, 16 : 155 - 186
  • [8] A comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks
    Krishna, Rajamani
    van Baten, Jasper M.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 87 : 120 - 126
  • [9] Perspective of microporous metal-organic frameworks for CO2 capture and separation
    Zhang, Zhangjing
    Yao, Zi-Zhu
    Xiang, Shengchang
    Chen, Banglin
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) : 2868 - 2899
  • [10] Hierarchical Mesoporous Metal-Organic Frameworks for Enhanced CO2 Capture
    Mao, Yiyin
    Chen, Danke
    Hu, Pan
    Guo, Yi
    Ying, Yulong
    Ying, Wen
    Peng, Xinsheng
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (43) : 15127 - 15132