Multi sensor fusion methods for state of charge estimation of smart lithium-ion batteries

被引:21
作者
Mao, Shuoyuan [1 ]
Han, Xuebing [1 ]
Lu, Yao [1 ]
Wang, Depeng [1 ]
Su, Anyu [1 ]
Lu, Languang [1 ]
Feng, Xuning [1 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing, Peoples R China
基金
中国博士后科学基金;
关键词
Smart battery; Battery management system; Multi-sensor fusion; Expansion force; State of charge estimation; MANAGEMENT-SYSTEMS; FORCE; PACKS; MODEL;
D O I
10.1016/j.est.2023.108736
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Multi-dimensional sensing is the key characteristic of next generation smart batteries. But the existing researches on multi-sensor fusion methods haven't focused on algorithm mechanism, the global optimal solution has not been built, the superiority has not been proved theoretically. For the first time, this research built the global optimal structure of multi-sensor fusion state estimation algorithm. Specifically, the state of charge (SoC) estimation problem of lithium iron phosphate (LFP) batteries is studied, cooperating with voltage signal, expansion force (EF) signal is introduced. Firstly, a normalization algorithm is introduced to overcome the drift of EF under different cycles and different pre-tightening force. Secondly, the non-monotonic relationship of LFP battery's EFSoC curve is addressed with a forced monotone transformation method in the transition areas. Then the global optimal multi-sensor fusion method is built, theoretical reductions are carried out to prove the higher precision of multi-sensor fusion methods compared to single-signal methods. Experiments are conducted to verify the effectiveness of the methods, even under the most serious situations, the fusion methods exhibit powerful correction ability, and the root mean square error can be controlled within 3 %. Moreover, the proposed algorithms shows strong tolerance to error sources.
引用
收藏
页数:14
相关论文
共 55 条
[1]   A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+ [J].
Amici, Julia ;
Asinari, Pietro ;
Ayerbe, Elixabete ;
Barboux, Philippe ;
Bayle-Guillemaud, Pascale ;
Behm, R. Juergen ;
Berecibar, Maitane ;
Berg, Erik ;
Bhowmik, Arghya ;
Bodoardo, Silvia ;
Castelli, Ivano E. ;
Cekic-Laskovic, Isidora ;
Christensen, Rune ;
Clark, Simon ;
Diehm, Ralf ;
Dominko, Robert ;
Fichtner, Maximilian ;
Franco, Alejandro A. ;
Grimaud, Alexis ;
Guillet, Nicolas ;
Hahlin, Maria ;
Hartmann, Sarah ;
Heiries, Vincent ;
Hermansson, Kersti ;
Heuer, Andreas ;
Jana, Saibal ;
Jabbour, Lara ;
Kallo, Josef ;
Latz, Arnulf ;
Lorrmann, Henning ;
Lovvik, Ole Martin ;
Lyonnard, Sandrine ;
Meeus, Marcel ;
Paillard, Elie ;
Perraud, Simon ;
Placke, Tobias ;
Punckt, Christian ;
Raccurt, Olivier ;
Ruhland, Janna ;
Sheridan, Edel ;
Stein, Helge ;
Tarascon, Jean-Marie ;
Trapp, Victor ;
Vegge, Tejs ;
Weil, Marcel ;
Wenzel, Wolfgang ;
Winter, Martin ;
Wolf, Andreas ;
Edstrom, Kristina .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[2]   State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter [J].
Chen, Cheng ;
Xiong, Rui ;
Yang, Ruixin ;
Shen, Weixiang ;
Sun, Fengchun .
JOURNAL OF CLEANER PRODUCTION, 2019, 234 :1153-1164
[3]   A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles [J].
Chen, Xiaokai ;
Lei, Hao ;
Xiong, Rui ;
Shen, Weixiang ;
Yang, Ruixin .
APPLIED ENERGY, 2019, 255
[4]   Porous Electrode Modeling and its Applications to Li-Ion Batteries [J].
Chen, Zhiqiang ;
Danilov, Dmitri L. ;
Eichel, Ruediger-A ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2022, 12 (32)
[5]   State of charge estimation for lithium-ion pouch batteries based on stress measurement [J].
Dai, Haifeng ;
Yu, Chenchen ;
Wei, Xuezhe ;
Sun, Zechang .
ENERGY, 2017, 129 :16-27
[6]   In Situ Electrochemical Regeneration of Degraded LiFePO4 Electrode with Functionalized Prelithiation Separator [J].
Fan, Min ;
Meng, Qinghai ;
Chang, Xin ;
Gu, Chao-Fan ;
Meng, Xin-Hai ;
Yin, Ya-Xia ;
Li, Hongliang ;
Wan, Li-jun ;
Guo, Yu-Guo .
ADVANCED ENERGY MATERIALS, 2022, 12 (18)
[7]   SOC estimation of Li-ion battery using convolutional neural network with U-Net architecture [J].
Fan, Xinyuan ;
Zhang, Weige ;
Zhang, Caiping ;
Chen, Anci ;
An, Fulai .
ENERGY, 2022, 256
[8]   Leveraging Cell Expansion Sensing in State of Charge Estimation: Practical Considerations [J].
Figueroa-Santos, Miriam A. ;
Siegel, Jason B. ;
Stefanopoulou, Anna G. .
ENERGIES, 2020, 13 (10)
[9]   Online state of charge and state of power co-estimation of lithium-ion batteries based on fractional-order calculus and model predictive control theory [J].
Guo, Ruohan ;
Shen, Weixiang .
APPLIED ENERGY, 2022, 327
[10]   State of charge estimation of high power lithium iron phosphate cells [J].
Huria, T. ;
Ludovici, G. ;
Lutzemberger, G. .
JOURNAL OF POWER SOURCES, 2014, 249 :92-102