SWIN-SFTNET : SPATIAL FEATURE EXPANSION AND AGGREGATION USING SWIN TRANSFORMER FOR WHOLE BREAST MICRO-MASS SEGMENTATION

被引:2
作者
Kamran, Sharif Amit [1 ]
Hossain, Khondker Fariha [1 ]
Tavakkoli, Alireza [1 ]
Bebis, George [1 ]
Baker, Sal [2 ]
机构
[1] Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA
[2] Univ Nevada, Sch Med, Reno, NV USA
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
基金
美国国家科学基金会;
关键词
Breast mass segmentation; Mammogram; Swin Transformer; Deep learning; Medical Imaging;
D O I
10.1109/ISBI53787.2023.10230342
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incorporating various mass shapes and sizes in training deep learning architectures has made breast mass segmentation challenging. Moreover, manual segmentation of masses of irregular shapes is time-consuming and error-prone. Though Deep Neural Network has shown outstanding performance in breast mass segmentation, it fails in segmenting micro-masses. In this paper, we propose a novel U-net-shaped transformer-based architecture, called Swin-SFTNet, that outperforms state-of-the-art architectures in breast mammography-based micro-mass segmentation. Firstly to capture the global context, we designed a novel Spatial Feature Expansion and Aggregation Block(SFEA) that transforms sequential linear patches into a structured spatial feature. Next, we combine it with the local linear features extracted by the swin transformer block to improve overall accuracy. We also incorporate a novel embedding loss that calculates similarities between linear feature embeddings of the encoder and decoder blocks. With this approach, we achieve higher segmentation dice over the state-of-the-art by 3.10% on CBIS-DDSM, 3.81% on InBreast, and 3.13% on CBIS pre-trained model on the InBreast test data set.
引用
收藏
页数:5
相关论文
共 12 条
[1]  
Cao Hu, 2021, arXiv
[2]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[3]   UNETR: Transformers for 3D Medical Image Segmentation [J].
Hatamizadeh, Ali ;
Tang, Yucheng ;
Nath, Vishwesh ;
Yang, Dong ;
Myronenko, Andriy ;
Landman, Bennett ;
Roth, Holger R. ;
Xu, Daguang .
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, :1748-1758
[4]  
Kamran S.A., 2021, P IEEECVF INT C COMP, P3235
[5]   Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network [J].
Kumar Singh, Vivek ;
Rashwan, Hatem A. ;
Romani, Santiago ;
Akram, Farhan ;
Pandey, Nidhi ;
Kamal Sarker, Md Mostafa ;
Saleh, Adel ;
Arenas, Meritxell ;
Arquez, Miguel ;
Puig, Domenec ;
Torrents-Barrena, Jordina .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 139
[6]   A curated mammography data set for use in computer-aided detection and diagnosis research [J].
Lee, Rebecca Sawyer ;
Gimenez, Francisco ;
Hoogi, Assaf ;
Miyake, Kanae Kawai ;
Gorovoy, Mia ;
Rubin, Daniel L. .
SCIENTIFIC DATA, 2017, 4
[7]   Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [J].
Liu, Ze ;
Lin, Yutong ;
Cao, Yue ;
Hu, Han ;
Wei, Yixuan ;
Zhang, Zheng ;
Lin, Stephen ;
Guo, Baining .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9992-10002
[8]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[9]   INbreast: Toward a Full-field Digital Mammographic Database [J].
Moreira, Ines C. ;
Amaral, Igor ;
Domingues, Ines ;
Cardoso, Antonio ;
Cardoso, Maria Joao ;
Cardoso, Jaime S. .
ACADEMIC RADIOLOGY, 2012, 19 (02) :236-248
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241