Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition

被引:12
|
作者
Su, Dongnan [1 ]
Hu, Zhigang [2 ,3 ]
Wu, Jipeng [1 ]
Shang, Peng [1 ]
Luo, Zhaohui [4 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] Henan Univ Sci & Technol, Sch Med Technol & Engn, Luoyang, Peoples R China
[3] Henan Univ Sci & Technol, Henan Intelligent Rehabil Med Robot Engn Res Ctr, Luoyang, Peoples R China
[4] State Owned Changhong Machinery Factory, Guilin, Peoples R China
关键词
stroke; lower limb exoskeleton; rehabilitation; motion intention recognition; adaptive control; OBSERVATIONAL GAIT-ANALYSIS; LOWER-EXTREMITY EXOSKELETON; SPINAL-CORD-INJURY; IMU-BASED GAIT; TOXIN TYPE-A; DESIGN; RELIABILITY; MANAGEMENT; EFFICACY; MODEL;
D O I
10.3389/fnbot.2023.1186175
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stroke is a significant cause of disability worldwide, and stroke survivors often experience severe motor impairments. Lower limb rehabilitation exoskeleton robots provide support and balance for stroke survivors and assist them in performing rehabilitation training tasks, which can effectively improve their quality of life during the later stages of stroke recovery. Lower limb rehabilitation exoskeleton robots have become a hot topic in rehabilitation therapy research. This review introduces traditional rehabilitation assessment methods, explores the possibility of lower limb exoskeleton robots combining sensors and electrophysiological signals to assess stroke survivors' rehabilitation objectively, summarizes standard human-robot coupling models of lower limb rehabilitation exoskeleton robots in recent years, and critically introduces adaptive control models based on motion intent recognition for lower limb exoskeleton robots. This provides new design ideas for the future combination of lower limb rehabilitation exoskeleton robots with rehabilitation assessment, motion assistance, rehabilitation treatment, and adaptive control, making the rehabilitation assessment process more objective and addressing the shortage of rehabilitation therapists to some extent. Finally, the article discusses the current limitations of adaptive control of lower limb rehabilitation exoskeleton robots for stroke survivors and proposes new research directions.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Control of Upper-Limb Power-Assist Exoskeleton Based on Motion Intention Recognition
    Huo, Weiguang
    Huang, Jian
    Wang, Yongji
    Wu, Jun
    Cheng, Lei
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011, : 2243 - 2248
  • [32] An Adaptive Backstepping Control Method for Lower-Limb Exoskeleton Robot
    Wang, Jianhua
    Ai, Pinghua
    Zhang, Jianbin
    Chen, Weihai
    Chen, Wenjie
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 574 - 578
  • [33] Human Lower Limb Motion Intention Recognition for Exoskeletons: A Review
    Li, Ling-Long
    Cao, Guang-Zhong
    Liang, Hong-Jie
    Zhang, Yue-Peng
    Cui, Fang
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 30007 - 30036
  • [34] Research on Upper Limb Motion Intention Classification and Rehabilitation Robot Control Based on sEMG
    Song, Tao
    Zhang, Kunpeng
    Yan, Zhe
    Li, Yuwen
    Guo, Shuai
    Li, Xianhua
    SENSORS, 2025, 25 (04)
  • [35] Development of a Pneumatic Exoskeleton Robot for Lower Limb Rehabilitation
    Goergen, R.
    Valdiero, A. C.
    Rasia, L. A.
    Oberdorfer, M.
    de Souza, J. P.
    Goncalves, R. S.
    2019 IEEE 16TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2019, : 187 - 192
  • [36] Synthesis and experiment of a lower limb exoskeleton rehabilitation robot
    Li, Jian
    Chen, Diansheng
    Tao, Chunjing
    Li, Hui
    INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2017, 44 (03) : 264 - 274
  • [37] Research status of lower limb exoskeleton rehabilitation robot
    Li, Ming
    Li, Hui
    Yu, Hongliu
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2024, 41 (04): : 833 - 839
  • [38] Trajectory tracking control of lower limb exoskeleton rehabilitation robot based on extended state observer
    Li, Han
    Sun, Chongshang
    Zhang, Jianqiang
    Chen, Weihai
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1294 - 1299
  • [39] An impedance control method of lower limb exoskeleton rehabilitation robot based on predicted forward dynamics
    Wang, Yuefei
    Liu, Zhen
    Zhu, Liucun
    Li, Xiaoying
    Wang, Huaibin
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1515 - 1518
  • [40] Research on Trajectory Tracking of Lower Limb Exoskeleton Rehabilitation Robot Based on Sliding Mode Control
    Wang, Jing
    Li, Jian
    Zhang, Weixuan
    Zhou, Fuxin
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2021, PT I, 2021, 13013 : 698 - 708