Proper Holomorphic Maps in Euclidean Spaces Avoiding Unbounded Convex Sets

被引:2
作者
Drnovsek, Barbara Drinovec [1 ,2 ]
Forstneric, Franc [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Stein manifold; Holomorphic embedding; Oka manifold; Minimal surface; Convexity; STRICTLY PSEUDOCONVEX DOMAINS; STEIN MANIFOLDS; UNIT BALL; EMBEDDINGS; MAPPINGS; DISCS;
D O I
10.1007/s12220-023-01222-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if E is a closed convex set in C-n (n > 1) contained in a closed halfspace H such that E boolean AND bH is nonempty and bounded, then the concave domain Omega = C-n\E contains images of proper holomorphicmaps f : X -> C-n from any Stein manifold X of dimension< n, with approximation of a given map on closed compact subsets of X. If in addition 2 dim X + 1 <= n then integral can be chosen an embedding, and if 2 dim X = n, then it can be chosen an immersion. Under a stronger condition on E, we also obtain the interpolation property for such maps on closed complex subvarieties.
引用
收藏
页数:22
相关论文
共 39 条
  • [1] Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves
    Alarcon, A.
    Drnovsek, B. Drinovec
    Forstneric, F.
    Lopez, F. J.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 851 - 886
  • [2] Alarcon A., 2021, Springer Monographs in Mathematics., DOI [10.1007/978-3-030-69056-4, DOI 10.1007/978-3-030-69056-4]
  • [3] Alarcón A, 2012, J DIFFER GEOM, V90, P351
  • [4] EXPLICIT IMBEDDING OF (PUNCTURED) DISK INTO C2
    ALEXANDER, H
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1977, 52 (04) : 539 - 544
  • [5] [Anonymous], 1975, ANN SCUOLA NORM-SCI
  • [6] [Anonymous], 1993, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
  • [7] Global and fine approximation of convex functions
    Azagra, Daniel
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 799 - 824
  • [8] MAPPINGS OF PARTIALLY ANALYTIC SPACES
    BISHOP, E
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (02) : 209 - &
  • [9] Borell S, 2008, MATH RES LETT, V15, P821
  • [10] Bozin V, 1999, INT MATH RES NOTICES, V1999, P1081