Convolutional neural network for biomarker discovery for triple negative breast cancer with RNA sequencing data

被引:0
|
作者
Chen, Xiangning [1 ]
Balko, Justin M. [2 ,3 ,4 ,5 ,6 ]
Ling, Fei [7 ]
Jin, Yabin [8 ]
Gonzalez, Anneliese [9 ]
Zhao, Zhongming [10 ,11 ]
Chen, Jingchun [12 ]
机构
[1] 410 AI LLC, 10 Plummer Ct, Germantown, MD 20876 USA
[2] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Dept Med, 2101 End Ave, Nashville, TN 37240 USA
[3] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Breast Canc Res Program, 2101 W End Ave, Nashville, TN 37240 USA
[4] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Med Ctr, Dept Pathol, Nashville, TN USA
[5] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Dept Microbiol, Nashville, TN USA
[6] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Dept Immunol, Nashville, TN USA
[7] South China Univ Technol, Sch Biol & Biol Engn, Guangzhou, Guangdong, Peoples R China
[8] First Peoples Hosp Foshan, Clin Res Inst, Foshan, Peoples R China
[9] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Internal Med, Houston, TX 77030 USA
[10] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[11] Univ Texas Houston, McGovern Med Sch, Dept Psychiat & Behav Sci, Houston, TX 77030 USA
[12] Univ Nevada Vegas, Nevada Inst Personalized Med, Las Vegas, NV 89154 USA
关键词
Convolutional neural network; Triple negative breast cancer; Biomarker discovery; RNA sequencing; Machine learning; CLASSIFICATION; EXPRESSION; SUBTYPES; PATHWAY; IMAGE; SMOTE;
D O I
10.1016/j.heliyon.2023.e14819
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Triple negative breast cancers (TNBCs) are tumors with a poor treatment response and prognosis. In this study, we propose a new approach, candidate extraction from convolutional neural network (CNN) elements (CECE), for discovery of biomarkers for TNBCs. We used the GSE96058 and GSE81538 datasets to build a CNN model to classify TNBCs and non-TNBCs and used the model to make TNBC predictions for two additional datasets, the cancer genome atlas (TCGA) breast cancer RNA sequencing data and the data from Fudan University Shanghai Cancer Center (FUSCC). Using correctly predicted TNBCs from the GSE96058 and TCGA datasets, we calculated saliency maps for these subjects and extracted the genes that the CNN model used to separate TNBCs from non-TNBCs. Among the TNBC signature patterns that the CNN models learned from the training data, we found a set of 21 genes that can classify TNBCs into two major classes, or CECE subtypes, with distinct overall survival rates (P = 0.0074). We replicated this subtype classification in the FUSCC dataset using the same 21 genes, and the two subtypes had similar differential overall survival rates (P = 0.0490). When all TNBCs were combined from the 3 datasets, the CECE II subtype had a hazard ratio of 1.94 (95% CI, 1.25-3.01; P = 0.0032). The results demonstrate that the spatial patterns learned by the CNN models can be utilized to discover interacting biomarkers otherwise unlikely to be identified by traditional approaches.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data
    Sun, Wenqing
    Tseng, Tzu-Liang
    Zhang, Jianying
    Qian, Wei
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2017, 57 : 4 - 9
  • [42] Filamin A in triple negative breast cancer
    Giovannelli, Pia
    Di Donato, Marzia
    Licitra, Fabrizio
    Sabbatino, Emilia
    Tutino, Viviana
    Castoria, Gabriella
    Migliaccio, Antimo
    STEROIDS, 2024, 205
  • [43] Identification and validation of the cellular senescence-related molecular subtypes of triple negative breast cancer via integrating bulk and single-cell RNA sequencing data
    Ju, Gaoda
    Zeng, Kai
    Lu, Linlin
    Diao, Han
    Wang, Hao
    Li, Xiaomin
    Zhou, Tianhao
    AMERICAN JOURNAL OF CANCER RESEARCH, 2023, 13 (02): : 569 - +
  • [44] Molecular Classification and Future Therapeutic Challenges of Triple-negative Breast Cancer
    Garmpis, Nikolaos
    Damaskos, Christos
    Garmpi, Anna
    Nikolettos, Konstantinos
    Dimitroulis, Dimitrios
    Diamantis, Evangelos
    Farmaki, Paraskevi
    Patsouras, Alexandros
    Voutyritsa, Errika
    Syllaios, Athanasios
    Zografos, Constantinos G.
    Antoniou, Efstathios A.
    Nikolettos, Nikos
    Kostakis, Alkiviadis
    Kontzoglou, Konstantinos
    Schizas, Dimitrios
    Nonni, Afroditi
    IN VIVO, 2020, 34 (04): : 1715 - 1727
  • [45] Revealing Cellular Heterogeneity and Key Regulatory Factors of Triple-Negative Breast Cancer through Single-Cell RNA Sequencing
    Zhang, Hu
    Sun, Yanan
    Du, Xinna
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2024, 29 (08):
  • [46] Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data
    Sanchez-Cauce, Raquel
    Perez-Martin, Jorge
    Luque, Manuel
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 204
  • [47] Estrogen receptor-α promoter methylation is a biomarker for outcome prediction of cisplatin resistance in triple-negative breast cancer
    Xu, Junnan
    Sun, Tao
    Guo, Xiangyu
    Wang, Yan
    Jing, Mingxi
    ONCOLOGY LETTERS, 2018, 15 (03) : 2855 - 2862
  • [48] Phase II and Biomarker Study of Cabozantinib in Metastatic Triple-Negative Breast Cancer Patients
    Tolaney, Sara M.
    Ziehr, David R.
    Guo, Hao
    Ng, Mei R.
    Barry, William T.
    Higgins, Michaela J.
    Isakoff, Steven J.
    Brock, Jane E.
    Ivanova, Elena V.
    Paweletz, Cloud P.
    Demeo, Michelle K.
    Ramaiya, Nikhil H.
    Overmoyer, Beth A.
    Jain, Rakesh K.
    Winer, Eric P.
    Duda, Dan G.
    ONCOLOGIST, 2017, 22 (01): : 25 - 32
  • [49] Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches
    Pastena, Paola
    Perera, Hiran
    Martinino, Alessandro
    Kartsonis, William
    Giovinazzo, Francesco
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (05)
  • [50] CD8 T Cell Score as a Prognostic Biomarker for Triple Negative Breast Cancer
    Oshi, Masanori
    Asaoka, Mariko
    Tokumaru, Yoshihisa
    Yan, Li
    Matsuyama, Ryusei
    Ishikawa, Takashi
    Endo, Itaru
    Takabe, Kazuaki
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (18) : 1 - 16