Convolutional neural network for biomarker discovery for triple negative breast cancer with RNA sequencing data

被引:0
|
作者
Chen, Xiangning [1 ]
Balko, Justin M. [2 ,3 ,4 ,5 ,6 ]
Ling, Fei [7 ]
Jin, Yabin [8 ]
Gonzalez, Anneliese [9 ]
Zhao, Zhongming [10 ,11 ]
Chen, Jingchun [12 ]
机构
[1] 410 AI LLC, 10 Plummer Ct, Germantown, MD 20876 USA
[2] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Dept Med, 2101 End Ave, Nashville, TN 37240 USA
[3] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Breast Canc Res Program, 2101 W End Ave, Nashville, TN 37240 USA
[4] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Med Ctr, Dept Pathol, Nashville, TN USA
[5] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Dept Microbiol, Nashville, TN USA
[6] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Dept Immunol, Nashville, TN USA
[7] South China Univ Technol, Sch Biol & Biol Engn, Guangzhou, Guangdong, Peoples R China
[8] First Peoples Hosp Foshan, Clin Res Inst, Foshan, Peoples R China
[9] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Internal Med, Houston, TX 77030 USA
[10] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[11] Univ Texas Houston, McGovern Med Sch, Dept Psychiat & Behav Sci, Houston, TX 77030 USA
[12] Univ Nevada Vegas, Nevada Inst Personalized Med, Las Vegas, NV 89154 USA
关键词
Convolutional neural network; Triple negative breast cancer; Biomarker discovery; RNA sequencing; Machine learning; CLASSIFICATION; EXPRESSION; SUBTYPES; PATHWAY; IMAGE; SMOTE;
D O I
10.1016/j.heliyon.2023.e14819
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Triple negative breast cancers (TNBCs) are tumors with a poor treatment response and prognosis. In this study, we propose a new approach, candidate extraction from convolutional neural network (CNN) elements (CECE), for discovery of biomarkers for TNBCs. We used the GSE96058 and GSE81538 datasets to build a CNN model to classify TNBCs and non-TNBCs and used the model to make TNBC predictions for two additional datasets, the cancer genome atlas (TCGA) breast cancer RNA sequencing data and the data from Fudan University Shanghai Cancer Center (FUSCC). Using correctly predicted TNBCs from the GSE96058 and TCGA datasets, we calculated saliency maps for these subjects and extracted the genes that the CNN model used to separate TNBCs from non-TNBCs. Among the TNBC signature patterns that the CNN models learned from the training data, we found a set of 21 genes that can classify TNBCs into two major classes, or CECE subtypes, with distinct overall survival rates (P = 0.0074). We replicated this subtype classification in the FUSCC dataset using the same 21 genes, and the two subtypes had similar differential overall survival rates (P = 0.0490). When all TNBCs were combined from the 3 datasets, the CECE II subtype had a hazard ratio of 1.94 (95% CI, 1.25-3.01; P = 0.0032). The results demonstrate that the spatial patterns learned by the CNN models can be utilized to discover interacting biomarkers otherwise unlikely to be identified by traditional approaches.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Detecting breast cancer using artificial intelligence: Convolutional neural network
    Choudhury, Avishek
    Perumalla, Sunanda
    TECHNOLOGY AND HEALTH CARE, 2021, 29 (01) : 33 - 43
  • [32] Convolutional neural network-based models for diagnosis of breast cancer
    Masud, Mehedi
    Rashed, Amr E. Eldin
    Hossain, M. Shamim
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14): : 11383 - 11394
  • [33] Genomic Profiling in Triple-Negative Breast Cancer
    Liedtke, Cornelia
    Bernemann, Christof
    Kiesel, Ludwig
    Rody, Achim
    BREAST CARE, 2013, 8 (06) : 408 - 413
  • [34] Next-Generation Sequencing and Triple-Negative Breast Cancer: Insights and Applications
    Tierno, Domenico
    Grassi, Gabriele
    Scomersi, Serena
    Bortul, Marina
    Generali, Daniele
    Zanconati, Fabrizio
    Scaggiante, Bruna
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [35] Triple Negative Breast Cancer: Therapeutic and Prognostic Implications
    Brady-West, Doreen C.
    McGrowder, Donovan A.
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2011, 12 (08) : 2139 - 2143
  • [36] Distant metastasis in triple-negative breast cancer
    Tseng, L. M.
    Hsu, N. C.
    Chen, S. C.
    Lu, Y. S.
    Lin, C. H.
    Chang, D. Y.
    Li, H.
    Lin, Y. C.
    Chang, H. K.
    Chao, T. C.
    Ouyang, F.
    Hou, M. F.
    NEOPLASMA, 2013, 60 (03) : 290 - 294
  • [37] Triple-Negative Breast Cancer Next-Generation Sequencing for Target Identification
    Marotti, Jonathan D.
    de Abreu, Francine B.
    Wells, Wendy A.
    Tsongalis, Gregory J.
    AMERICAN JOURNAL OF PATHOLOGY, 2017, 187 (10): : 2133 - 2138
  • [38] Circulating non-coding RNA-biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?
    Ritter, Andrea
    Hirschfeld, Marc
    Berner, Kai
    Ruecker, Gerta
    Jaeger, Markus
    Weiss, Daniela
    Medl, Markus
    Noethling, Claudia
    Gassner, Sandra
    Asberger, Jasmin
    Erbes, Thalia
    INTERNATIONAL JOURNAL OF ONCOLOGY, 2020, 56 (01) : 47 - 68
  • [39] Drug Repositioning and Subgroup Discovery for Precision Medicine Implementation in Triple Negative Breast Cancer
    Al-Taie, Zainab
    Hannink, Mark
    Mitchem, Jonathan
    Papageorgiou, Christos
    Shyu, Chi-Ren
    CANCERS, 2021, 13 (24)
  • [40] Prediction of adjuvant chemotherapy response in triple negative breast cancer with discovery and targeted proteomics
    Gamez-Pozo, Angelo
    Trilla-Fuertes, Lucia
    Prado-Vazquez, Guillermo
    Chiva, Cristina
    Lopez-Vacas, Rocio
    Nanni, Paolo
    Berges-Soria, Julia
    Grossmann, Jonas
    Diaz-Almiron, Mariana
    Ciruelos, Eva
    Sabido, Eduard
    Espinosa, Enrique
    Fresno Vara, Juana Angel
    PLOS ONE, 2017, 12 (06):