Load Forecasting of Electric Vehicle Charging Station Based on Power Big Data and Improved BP Neural Network

被引:0
作者
Sun, Hao [1 ]
Wang, Shan [2 ]
Liu, Chunlei [1 ]
机构
[1] State Grid Hebei Elect Power Co Ltd, Baoding Power Supply Co, Baoding 071000, Hebei, Peoples R China
[2] State Grid Jibei Elect Power Co Ltd, Ltd Skills Training Ctr, Baoding 071000, Peoples R China
来源
ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022 | 2023年 / 153卷
关键词
Electric car; Big data; Load forecasting; Neural networks;
D O I
10.1007/978-3-031-20738-9_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to accurately predict the load of electric vehicle charging stations, this paper extracts power data from the enterprise data center through the power big data analysis method, cleans and processes the data, and then analyzes the main factors affecting the charging load. The load prediction model is established for the station and all charging stations in the area, and finally the reliability of the model is verified according to the field measured data.
引用
收藏
页码:410 / 418
页数:9
相关论文
共 8 条
[1]  
[Anonymous], 1997, Adv. Psychol
[2]   PEV Charging Profile Prediction and Analysis Based on Vehicle Usage Data [J].
Ashtari, Ali ;
Bibeau, Eric ;
Shahidinejad, Soheil ;
Molinski, Tom .
IEEE TRANSACTIONS ON SMART GRID, 2012, 3 (01) :341-350
[3]  
Bunsen Till, 2019, Global EV Outlook 2019, P195
[4]  
Hadley S. W., 2009, Electr J, V22, P56, DOI [DOI 10.1016/J.TEJ.2009.10.011, 10.1016/j.tej.2009.10.011]
[5]  
Juncheng Zhu, 2019, 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), P3531, DOI 10.1109/ISGT-Asia.2019.8881655
[6]  
Kaiser J., 2014, Journal of Systems Integration (1804-2724), V5, DOI [10.20470/jsi.v5i1.178, DOI 10.20470/JSI.V5I1.178]
[7]  
Majidpour M, 2014, INT CONF SMART GRID, P710, DOI 10.1109/SmartGridComm.2014.7007731
[8]  
Xu XB, 2014, 2014 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA), P388, DOI 10.1109/ISGT-Asia.2014.6873823