Structural and electrical studies of B3+-and-In3+-ion co-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes

被引:6
作者
Wang, Sea-Fue [1 ,3 ]
Shieh, Derrick [1 ]
Ko, Yi-An [1 ]
Wu, Maw-Kuen [2 ]
机构
[1] Natl Taipei Univ Technol, Dept Mat & Mineral Resources Engn, Taipei 106, Taiwan
[2] Acad Sinica, Inst Phys, Sect 2, 128, Acad Rd, Taipei 11529, Taiwan
[3] Natl Taipei Univ Technol, Dept Mat & Mineral Resources Engn, 1, Sec 3, Chung-Hsiao E Rd, Taipei 106, Taiwan
关键词
Solid electrolyte; Li1; 3Al0; 3Ti1; 7(PO4)3; Ionic conductivity; All-solid-state battery; IONIC-CONDUCTIVITY; BATTERIES; LITIOPO4; WATER;
D O I
10.1016/j.ssi.2023.116174
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, B3+ and In3+ ions were co-doped at the Al3+ sites of Li1.3Al0.3Ti1.7(PO4)3 electrolyte using a solid-state reaction with the goal of obtaining electrolytes with remarkable Li-ion conductivities. B3+-ion doping enhanced the densification of Li1.3Al0.3-yByTi1.7(PO4)3 electrolytes, and Li1.3Al0.22B0.08Ti1.7(PO4)3 electrolyte delivered the highest relative density of 97.6%. Subsequent In3+-ion doping further enhanced densification, and Li1.3Al0.21B0.08In0.01Ti1.7(PO4)3 electrolyte delivered the highest relative density of 98.2%. However, the elec-trolyte densification diminished rapidly upon further increasing the In3+-ion content. The peaks in the X-ray diffraction patterns of the Li1.3Al0.3-yByTi1.7(PO4)3 and Li1.3Al0.22-xB0.08InxTi1.7(PO4)3 electrolytes were indexed to rhombohedral NASICON-type LiTi2(PO4)3 with the space group R3c with trace amounts of LiTiPO5 secondary phase. Upon incorporating In3+ ions into the lattice of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte, the cell volume and the transport channels for Li+ ions were expanded, while B3+-ion incorporation slightly contracted the cell. The scanning electron microscopy and Raman spectroscopy results indicated that B3+-ion substitution into the Li1.3Al0.3Ti1.7(PO4)3 lattice to obtain Li1.3Al0.3-yByTi1.7(PO4)3 electrolytes, which led to the increase in the structural order of the lattices and promoted the formation of microstructures with superior crystallinity and smaller and more uniform grain sizes. Further, B3+ and In3+-ions co-doped Li1.3Al0.22-xB0.08InxTi1.7(PO4)3 elec-trolytes showed lower structural order, larger grain size, lower grain-size uniformity, and more pore contents than those of undoped Li1.3Al0.3Ti1.7(PO4). The ionic conductivities of the Li1.3Al0.3-yByTi1.7(PO4)3 electrolytes increased with increasing concentration of B3+-ion dopant and reached a maximum of 8.35x 10-4 S/cm for Li1.3Al0.22B0.08Ti1.7(PO4)3. Among the Li1.3Al0.22-xB0.08InxTi1.7(PO4)3 electrolytes, Li1.3Al0.21B0.08In0.01Ti1.7(PO4)3 presented the highest ionic conductivity of 1.08 x 10-3 S/cm, which was closely correlated to its high relative density. The contribution of electronic conductivity to total conductivity was found to be trivial.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) Superionic Conductor
    Monchak, Mykhailo
    Hupfer, Thomas
    Senyshyn, Anatoliy
    Boysen, Hans
    Chernyshov, Dmitry
    Hansen, Thomas
    Schell, Karl G.
    Bucharsky, Ethel C.
    Hoffmann, Michael J.
    Ehrenberg, Helmut
    INORGANIC CHEMISTRY, 2016, 55 (06) : 2941 - 2945
  • [32] Foaming suppression during the solid-state synthesis of the Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Shindrov, Alexander A.
    Skachilova, Maria G.
    Gerasimov, Konstantin B.
    Kosova, Nina, V
    SOLID STATE SCIENCES, 2024, 154
  • [33] Ultrafast high-temperature sintering (UHS) of Li1.3Al0.3Ti1.7(PO4)3
    Lin, Yong
    Luo, Nan
    Quattrocchi, Emanuele
    Ciucci, Francesco
    Wu, Jinghua
    Kermani, Milad
    Dong, Jian
    Hu, Chunfeng
    Grasso, Salvatore
    CERAMICS INTERNATIONAL, 2021, 47 (15) : 21982 - 21987
  • [34] Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol-gel technique
    Wu, XM
    Li, XH
    Zhang, YH
    Xu, MF
    He, ZQ
    MATERIALS LETTERS, 2004, 58 (7-8) : 1227 - 1230
  • [35] Effect of pressure on the properties of a NASICON Li1.3Al0.3Ti1.7(PO4)3 nanofiber solid electrolyte
    La Monaca, Andrea
    Girard, Gabriel
    Savoie, Sylvio
    Demers, Hendrix
    Bertoni, Giovanni
    Krachkovskiy, Sergey
    Marras, Sergio
    Mugnaioli, Enrico
    Gemmi, Mauro
    Benetti, Daniele
    Vijh, Ashok
    Rosei, Federico
    Paolella, Andrea
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (23) : 13688 - 13696
  • [36] Sulfur doped Li1.3Al0.3Ti1.7(PO4)3solid electrolytes with enhanced ionic conductivity and a reduced activation energy barrier
    Kizilaslan, Abdulkadir
    Kirkbinar, Mine
    Cetinkaya, Tugrul
    Akbulut, Hatem
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (30) : 17221 - 17228
  • [37] Electrical and Structural Properties of Li1.3Al0.3Ti1.7(PO4)3-Based Ceramics Prepared with the Addition of Li4SiO4
    Kwatek, Konrad
    Slubowska, Wioleta
    Nowinski, Jan Leszek
    Krawczynska, Agnieszka Teresa
    Sobrados, Isabel
    Sanz, Jesus
    MATERIALS, 2021, 14 (19)
  • [38] Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity
    Waetzig, Katja
    Rost, Axel
    Heubner, Christian
    Coeler, Matthias
    Nikolowski, Kristian
    Wolter, Mareike
    Schilm, Jochen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 818
  • [39] Effect of TeO2 sintering aid on the microstructure and electrical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Zhao, Xiangchao
    Luo, Yuansong
    Zhao, Xiujian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 927
  • [40] Insight into the mechanism of Li ion diffusion in fluorine-doped Li1.3Al0.3Ti1.7(PO4)3 as an electrolyte for solid lithium metal batteries
    Yin, Fusheng
    Zhang, Zhijun
    Fang, Yuling
    Sun, Chunwen
    JOURNAL OF ENERGY STORAGE, 2023, 73