Automatic Extraction of Bare Soil Land from High-Resolution Remote Sensing Images Based on Semantic Segmentation with Deep Learning

被引:11
|
作者
He, Chen [1 ,2 ]
Liu, Yalan [1 ,2 ]
Wang, Dacheng [1 ]
Liu, Shufu [1 ]
Yu, Linjun [1 ]
Ren, Yuhuan [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
bare soil land; high-resolution remote sensing imagery; semantic segmentation; deep learning; Deeplabv3+; CBAM;
D O I
10.3390/rs15061646
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate monitoring of bare soil land (BSL) is an urgent need for environmental governance and optimal utilization of land resources. High-resolution imagery contains rich semantic information, which is beneficial for the recognition of objects on the ground. Simultaneously, it is susceptible to the impact of its background. We propose a semantic segmentation model, Deeplabv3+-M-CBAM, for extracting BSL. First, we replaced the Xception of Deeplabv3+ with MobileNetV2 as the backbone network to reduce the number of parameters. Second, to distinguish BSL from the background, we employed the convolutional block attention module (CBAM) via a combination of channel attention and spatial attention. For model training, we built a BSL dataset based on BJ-2 satellite images. The test result for the F1 of the model was 88.42%. Compared with Deeplabv3+, the classification accuracy improved by 8.52%, and the segmentation speed was 2.34 times faster. In addition, compared with the visual interpretation, the extraction speed improved by 11.5 times. In order to verify the transferable performance of the model, Jilin-1GXA images were used for the transfer test, and the extraction accuracies for F1, IoU, recall and precision were 86.07%, 87.88%, 87.00% and 95.80%, respectively. All of these experiments show that Deeplabv3+-M-CBAM achieved efficient and accurate extraction results and a well transferable performance for BSL. The methodology proposed in this study exhibits its application value for the refinement of environmental governance and the surveillance of land use.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A high-resolution remote sensing image building extraction method based on deep learning
    Fan R.
    Chen Y.
    Xu Q.
    Wang J.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (01): : 34 - 41
  • [42] A Generalization Sample Learning Method of Deep Learning for Semantic Segmentation of Remote Sensing Images
    Zheng, Chen
    Li, Jingying
    Chen, Yuncheng
    Wang, Leiguang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [43] A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images
    Jiang, Huiwei
    Peng, Min
    Zhong, Yuanjun
    Xie, Haofeng
    Hao, Zemin
    Lin, Jingming
    Ma, Xiaoli
    Hu, Xiangyun
    REMOTE SENSING, 2022, 14 (07)
  • [44] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES WITH RICH SPECTRAL CONTENT
    Ben Hamida, A.
    Benoit, A.
    Lambert, P.
    Klein, L.
    Ben Amar, C.
    Audebert, N.
    Lefevre, S.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2569 - 2572
  • [45] MANet: a multi-level aggregation network for semantic segmentation of high-resolution remote sensing images
    Chen, Bingyu
    Xia, Min
    Qian, Ming
    Huang, Junqing
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) : 5874 - 5894
  • [46] Cross-Scale Feature Propagation Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zeng, Qiaolin
    Zhou, Jingxiang
    Niu, Xuerui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [47] IMPROVING SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK
    Hosseinpour, H. R.
    Samadzadegan, F.
    Javan, F. Dadrass
    Motayyeb, S.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/ 4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 48-4, 2023, : 45 - 51
  • [48] Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning
    Xu, Yongyang
    Xie, Zhong
    Feng, Yaxing
    Chen, Zhanlong
    REMOTE SENSING, 2018, 10 (09)
  • [49] On the Effectiveness of Weakly Supervised Semantic Segmentation for Building Extraction From High-Resolution Remote Sensing Imagery
    Li, Zhenshi
    Zhang, Xueliang
    Xiao, Pengfeng
    Zheng, Zixian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3266 - 3281
  • [50] A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network
    Zhao, Jingzheng
    Wang, Liyuan
    Yang, Hui
    Wu, Penghai
    Wang, Biao
    Pan, Chengrong
    Wu, Yanlan
    REMOTE SENSING, 2022, 14 (21)