Maize plant detection using UAV-based RGB imaging and YOLOv5

被引:23
作者
Lu, Chenghao [1 ]
Nnadozie, Emmanuel [1 ,2 ]
Camenzind, Moritz Paul [1 ]
Hu, Yuncai [1 ]
Yu, Kang [1 ]
机构
[1] Tech Univ Munich, Sch Life Sci, Precis Agr Lab, Freising Weihenstephan, Germany
[2] Univ Nigeria, Mechatron Res Grp, Nsukka, Nigeria
关键词
crop scouting; deep learning; plant detection model; UAV remote sensing; YOLOv5; application;
D O I
10.3389/fpls.2023.1274813
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In recent years, computer vision (CV) has made enormous progress and is providing great possibilities in analyzing images for object detection, especially with the application of machine learning (ML). Unmanned Aerial Vehicle (UAV) based high-resolution images allow to apply CV and ML methods for the detection of plants or their organs of interest. Thus, this study presents a practical workflow based on the You Only Look Once version 5 (YOLOv5) and UAV images to detect maize plants for counting their numbers in contrasting development stages, including the application of a semi-auto-labeling method based on the Segment Anything Model (SAM) to reduce the burden of labeling. Results showed that the trained model achieved a mean average precision (mAP@0.5) of 0.828 and 0.863 for the 3-leaf stage and 7-leaf stage, respectively. YOLOv5 achieved the best performance under the conditions of overgrown weeds, leaf occlusion, and blurry images, suggesting that YOLOv5 plays a practical role in obtaining excellent performance under realistic field conditions. Furthermore, introducing image-rotation augmentation and low noise weight enhanced model accuracy, with an increase of 0.024 and 0.016 mAP@0.5, respectively, compared to the original model of the 3-leaf stage. This work provides a practical reference for applying lightweight ML and deep learning methods to UAV images for automated object detection and characterization of plant growth under realistic environments.
引用
收藏
页数:13
相关论文
共 32 条
[1]  
Bochkovskiy A, 2020, Arxiv, DOI arXiv:2004.10934
[2]   Soybean Seed Yield Response to Plant Density by Yield Environment in North America [J].
Carciochi, Walter D. ;
Schwalbert, Rai ;
Andrade, Fernando H. ;
Corassa, Geomar M. ;
Carter, Paul ;
Gaspar, Adam R. ;
Schmidt, John ;
Ciampitti, Ignacio A. .
AGRONOMY JOURNAL, 2019, 111 (04) :1923-1932
[3]   Corn planting quality assessment in very high-resolution RGB UAV imagery using Yolov5 and Python']Python [J].
Casuccio, Lucas ;
Kotze, Andre .
25TH AGILE CONFERENCE ON GEOGRAPHIC INFORMATION SCIENCE ARTIFICIAL INTELLIGENCE IN THE SERVICE OF GEOSPATIAL TECHNOLOGIES, 2022, 3
[4]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226
[5]   Agricultural Robotics for Field Operations [J].
Fountas, Spyros ;
Mylonas, Nikos ;
Malounas, Ioannis ;
Rodias, Efthymios ;
Santos, Christoph Hellmann ;
Pekkeriet, Erik .
SENSORS, 2020, 20 (09)
[6]   Meta multi-task nuclei segmentation with fewer training samples [J].
Han, Chu ;
Yao, Huasheng ;
Zhao, Bingchao ;
Li, Zhenhui ;
Shi, Zhenwei ;
Wu, Lei ;
Chen, Xin ;
Qu, Jinrong ;
Zhao, Ke ;
Lan, Rushi ;
Liang, Changhong ;
Pan, Xipeng ;
Liu, Zaiyi .
MEDICAL IMAGE ANALYSIS, 2022, 80
[7]  
Kirillov A, 2023, Arxiv, DOI [arXiv:2304.02643, DOI 10.48550/ARXIV.2304.02643]
[8]  
Kitano BT, 2024, IEEE GEOSCI REMOTE S, P1, DOI [10.1109/lgrs.2019.2930549, DOI 10.1109/LGRS.2019.2930549, 10.1109/lgrs.2019.2930549, 10.1109/LGRS.2019.2930549]
[9]   Improved YOLO v5 Wheat Ear Detection Algorithm Based on Attention Mechanism [J].
Li, Rui ;
Wu, Yanpeng .
ELECTRONICS, 2022, 11 (11)
[10]   Seedling maize counting method in complex backgrounds based on YOLOV5 and Kalman filter tracking algorithm [J].
Li, Yang ;
Bao, Zhiyuan ;
Qi, Jiangtao .
FRONTIERS IN PLANT SCIENCE, 2022, 13