UNIQUE ECCENTRIC CLIQUE GRAPHS

被引:0
作者
Santhakumaran, A. P. [1 ]
机构
[1] Hindustan Inst Technol & Sci, Dept Math, Chennai 603103, Tamil Nadu, India
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2023年 / 38卷 / 02期
关键词
clique graph; graph eccentricity; connected graph; CENTRALITY;
D O I
10.22190/FUMI201217016S
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph and sigma the set of all cliques in G. In this paper we introduce the concepts of unique (sigma, sigma)-eccentric clique graphs and self (sigma, sigma)-centered graphs. Certain standard classes of graphs are shown to be self (sigma, sigma)-centered, and we characterize unique (sigma, sigma)-eccentric clique graphs which are self (sigma, sigma)-centered.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 1981, Theory and applications of graphs
[2]   CENTRALITY IN SOCIAL NETWORKS CONCEPTUAL CLARIFICATION [J].
FREEMAN, LC .
SOCIAL NETWORKS, 1979, 1 (03) :215-239
[3]   SET OF MEASURES OF CENTRALITY BASED ON BETWEENNESS [J].
FREEMAN, LC .
SOCIOMETRY, 1977, 40 (01) :35-41
[4]  
Harary F., 1988, Graph Theory
[5]   UNIQUE ECCENTRIC POINT GRAPHS [J].
PARTHASARATHY, KR ;
NANDAKUMAR, R .
DISCRETE MATHEMATICS, 1983, 46 (01) :69-74
[6]   Periphery with respect to cliques in graphs [J].
Santhakumaran, A. P. .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (02) :245-254
[7]  
Santhakumaran A. P., 2002, International Journal of Management and Systems, V18, P275
[8]  
Santhakumaran A. P., 2010, Journal of Combinatorial Mathematics and Combinatorial Computing, V72, P231
[9]  
Santhakumaran A. P., 2005, Bulletin of Pure and Applied Sciences, V24E, P167
[10]  
Slater P. J., Lecture Notes in Mathematics, V1073, DOI [10.1007/BFb0073115, DOI 10.1007/BFB0073115]