Time-varying forecast combination for high-dimensional data

被引:4
作者
Chen, Bin [1 ]
Maung, Kenwin [2 ]
机构
[1] Univ Rochester, Rochester, NY 14642 USA
[2] Rutgers State Univ, Dept Econ, New Brunswick, NJ 08901 USA
关键词
Cross validation; Forecast combination; High dimension; Local linear estimation; SCAD; Sparsity; NONCONCAVE PENALIZED LIKELIHOOD; SMOOTH STRUCTURAL-CHANGES; NONPARAMETRIC REGRESSION; SERIES MODELS; VARIABLE SELECTION; CROSS-VALIDATION; DIVERGING NUMBER; SHRINKAGE; LASSO; PERFORMANCE;
D O I
10.1016/j.jeconom.2023.01.024
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we propose a new nonparametric estimator of time-varying forecast combination weights. When the number of individual forecasts is small, we study the asymptotic properties of the local linear estimator. When the number of candidate forecasts exceeds or diverges with the sample size, we consider penalized local linear estimation with the group SCAD penalty. We show that the estimator exhibits the oracle property and correctly selects relevant forecasts with probability approaching one. Simulations indicate that the proposed estimators outperform existing combination schemes when structural changes exist. An empirical application on inflation and unemployment forecasting highlights the merits of our approach relative to other popular methods in the literature.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 65 条
[1]   Persistence in forecasting performance and conditional combination strategies [J].
Aiolfi, Marco ;
Timmermann, Allan .
JOURNAL OF ECONOMETRICS, 2006, 135 (1-2) :31-53
[2]   Testing conditional factor models [J].
Ang, Andrew ;
Kristensen, Dennis .
JOURNAL OF FINANCIAL ECONOMICS, 2012, 106 (01) :132-156
[3]   Machine Learning Time Series Regressions With an Application to Nowcasting [J].
Babii, Andrii ;
Ghysels, Eric ;
Striaukas, Jonas .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (03) :1094-1106
[4]   Determining the number of factors in approximate factor models [J].
Bai, JS ;
Ng, S .
ECONOMETRICA, 2002, 70 (01) :191-221
[5]   COMBINATION OF FORECASTS [J].
BATES, JM ;
GRANGER, CWJ .
OPERATIONAL RESEARCH QUARTERLY, 1969, 20 (04) :451-&
[6]  
Belloni A, 2018, Arxiv, DOI [arXiv:1806.01888, 10.48550/ARXIV.1806.01888]
[7]   Least squares after model selection in high-dimensional sparse models [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
BERNOULLI, 2013, 19 (02) :521-547
[8]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[9]   Forecasting using random subspace methods [J].
Boot, Tom ;
Nibbering, Didier .
JOURNAL OF ECONOMETRICS, 2019, 209 (02) :391-406
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32