Short-Term Probabilistic Forecasting Method for Wind Speed Combining Long Short-Term Memory and Gaussian Mixture Model

被引:1
|
作者
He, Xuhui [1 ,2 ]
Lei, Zhihao [1 ,2 ]
Jing, Haiquan [1 ,2 ]
Zhong, Rendong [1 ,2 ]
机构
[1] Cent South Univ, Sch Civil Engn, Changsha 410075, Peoples R China
[2] Natl Engn Lab High Speed Railway Construction, Changsha 410075, Peoples R China
关键词
wind speed forecasting; short-time forecast; probabilistic forecast; long short-term memory; gaussian mixture model; LSTM NETWORK; DECOMPOSITION; ALGORITHM;
D O I
10.3390/atmos14040717
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind speed forecasting is advantageous in reducing wind-induced accidents or disasters and increasing the capture of wind power. Accordingly, this forecasting process has been a focus of research in the field of engineering. However, because wind speed is chaotic and random in nature, its forecasting inevitably includes errors. Consequently, specifying the appropriate method to obtain accurate forecasting results is difficult. The probabilistic forecasting method has considerable relevance to short-term wind speed forecasting because it provides both the predicted value and the error distribution. This study proposes a probabilistic forecasting method for short-term wind speeds based on the Gaussian mixture model and long short-term memory. The precision of the proposed method is evaluated by prediction intervals (i.e., prediction interval coverage probability, prediction interval normalized average width, and coverage width-based criterion) using 29 monitored wind speed datasets. The effects of wind speed characteristics on the forecasting precision of the proposed method were further studied. Results show that the proposed method is effective in obtaining the probability distribution of predicted wind speeds, and the forecast results are highly accurate. The forecasting precision of the proposed method is mainly influenced by the wind speed difference and standard deviation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Application of Gaussian Mixture Regression Model for Short-Term Wind Speed Forecasting
    Hossain, Md Emrad
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [2] Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model
    Zhang, Jinhua
    Yan, Jie
    Infield, David
    Liu, Yongqian
    Lien, Fue-sang
    APPLIED ENERGY, 2019, 241 : 229 - 244
  • [3] A Short-Term Wind Speed Forecasting Model Based on a Multi-Variable Long Short-Term Memory Network
    Xie, Anqi
    Yang, Hao
    Chen, Jing
    Sheng, Li
    Zhang, Qian
    ATMOSPHERE, 2021, 12 (05)
  • [4] Developing a hybrid probabilistic model for short-term wind speed forecasting
    Zhang, Xiaobo
    APPLIED INTELLIGENCE, 2023, 53 (01) : 728 - 745
  • [5] Developing a hybrid probabilistic model for short-term wind speed forecasting
    Xiaobo Zhang
    Applied Intelligence, 2023, 53 : 728 - 745
  • [6] Short-term wind speed forecasting based on long short-term memory and improved BP neural network
    Chen, Gonggui
    Tang, Bangrui
    Zeng, Xianjun
    Zhou, Ping
    Kang, Peng
    Long, Hongyu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [7] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Xing, Wang
    Qi-liang, Wu
    Gui-rong, Tan
    Dai-li, Qian
    Ke, Zhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45603 - 45623
  • [8] Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method
    Wang, Ying
    Feng, Bo
    Hua, Qing-Song
    Sun, Li
    SUSTAINABILITY, 2021, 13 (07)
  • [9] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Wang Xing
    Wu Qi-liang
    Tan Gui-rong
    Qian Dai-li
    Zhou Ke
    Multimedia Tools and Applications, 2024, 83 : 45603 - 45623
  • [10] Adaptive Gaussian Process for Short-Term Wind Speed Forecasting
    Jiang, Xiaoqian
    Dong, Bing
    Xie, Le
    Sweeney, Latanya
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 661 - 666