On the Outer Independent Total Double Roman Domination in Graphs

被引:3
作者
Ahangar, H. Abdollahzadeh [1 ]
Chellali, M. [2 ]
Sheikholeslami, S. M. [3 ]
Valenzuela-Tripodoro, J. C. [4 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Shariati Ave, Babol Ir 4714871167, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[4] Univ Cadiz, Dept Math, Cadiz, Spain
关键词
(Total) double Roman domination; outer independent (total) double Roman domination;
D O I
10.1007/s00009-023-02317-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A double Roman dominating function (DRDF) on a graph G = (V, E) is a function f : V ? {0, 1, 2, 3} satisfying (i) if f(v) = 0, then there must be at least two neighbors assigned 2 under f or one neighbor w with f(w) = 3; and (ii) if f(v) = 1 then v must be adjacent to a vertex w, such that f(w) = 2. A DRDF is an outer independent total double Roman dominating function (OITDRDF) on G if the set of vertices labeled 0 induces an edgeless subgraph and the subgraph induced by the vertices with a non-zero label has no isolated vertices. The weight of an OITDRDF is the sum of its function values over all vertices, and the outer independent total Roman dominating number ?(oi) (tdR)(G) is the minimum weight of an OITDRDF on G. First, we show that the problem of determining ?(oi) (tdR)(G) is NP-complete for bipartite and chordal graphs. Then, we show that it is solvable in linear time when we are restricting to bounded clique-width graphs. Moreover, we present some tight bounds on ?(oi) (tdR)(G) as well as the exact values for several graph families.
引用
收藏
页数:17
相关论文
共 18 条
  • [1] Total Roman {2}-Dominating Functions in Graphs
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) : 937 - 958
  • [2] Maximal double Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 414
  • [3] Outer independent double Roman domination
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
  • [4] Mixed Roman Domination in Graphs
    Ahangar, H. Abdollahzadeh
    Haynes, Teresa W.
    Valenzuela-Tripodoro, J. C.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (04) : 1443 - 1454
  • [5] Outer independent Roman dominating functions in graphs
    Ahangar, Hossein Abdollahzadeh
    Chellali, Mustapha
    Samodivkin, Vladimir
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (12) : 2547 - 2557
  • [6] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [7] On the strong Roman domination number of graphs
    Alvarez-Ruiz, M. P.
    Mediavilla-Gradolph, T.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    Yero, I. G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 231 : 44 - 59
  • [8] Double Roman domination
    Beeler, Robert A.
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 211 : 23 - 29
  • [9] Outer-independent total Roman domination in graphs
    Cabrera Martinez, Abel
    Kuziak, Dorota
    Yero, Ismael G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 269 : 107 - 119
  • [10] Varieties of Roman domination II
    Chellali, M.
    Jafari Rad, N.
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 966 - 984