Quantum self-consistent equation-of-motion method for computing molecular excitation energies, ionization potentials, and electron affinities on a quantum computer

被引:40
作者
Asthana, Ayush [1 ,7 ]
Kumar, Ashutosh [2 ]
Abraham, Vibin [3 ]
Grimsley, Harper [1 ,7 ]
Zhang, Yu [2 ]
Cincio, Lukasz [2 ]
Tretiak, Sergei [2 ,4 ]
Dub, Pavel A. [5 ]
Economou, Sophia E. [6 ,7 ]
Barnes, Edwin [6 ,7 ]
Mayhall, Nicholas J. [1 ,7 ]
机构
[1] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[3] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[4] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Chem Div, Los Alamos, NM 87545 USA
[6] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[7] Virginia Tech, Ctr Quantum Informat Sci & Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
COUPLED-CLUSTER METHOD; EXCITED-STATE; PROPAGATOR; CONSTRUCTION; CHEMISTRY;
D O I
10.1039/d2sc05371c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Near-term quantum computers are expected to facilitate material and chemical research through accurate molecular simulations. Several developments have already shown that accurate ground-state energies for small molecules can be evaluated on present-day quantum devices. Although electronically excited states play a vital role in chemical processes and applications, the search for a reliable and practical approach for routine excited-state calculations on near-term quantum devices is ongoing. Inspired by excited-state methods developed for the unitary coupled-cluster theory in quantum chemistry, we present an equation-of-motion-based method to compute excitation energies following the variational quantum eigensolver algorithm for ground-state calculations on a quantum computer. We perform numerical simulations on H-2, H-4, H2O, and LiH molecules to test our quantum self-consistent equation-of-motion (q-sc-EOM) method and compare it to other current state-of-the-art methods. q-sc-EOM makes use of self-consistent operators to satisfy the vacuum annihilation condition, a critical property for accurate calculations. It provides real and size-intensive energy differences corresponding to vertical excitation energies, ionization potentials and electron affinities. We also find that q-sc-EOM is more suitable for implementation on NISQ devices as it is expected to be more resilient to noise compared with the currently available methods.
引用
收藏
页码:2405 / 2418
页数:14
相关论文
共 100 条
[41]   Unitary coupled-cluster based self-consistent polarization propagator theory: A third-order formulation and pilot applications [J].
Liu, Junzi ;
Asthana, Ayush ;
Cheng, Lan ;
Mukherjee, Debashis .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24)
[42]   From Pulses to Circuits and Back Again: A Quantum Optimal Control Perspective on Variational Quantum Algorithms [J].
Magann, Alicia B. ;
Arenz, Christian ;
Grace, Matthew D. ;
Ho, Tak-San ;
Kosut, Robert L. ;
McClean, Jarrod R. ;
Rabitz, Herschel A. ;
Sarovar, Mohan .
PRX QUANTUM, 2021, 2 (01)
[43]  
Mahapatra U. S., 1998, ADV QUANTUM CHEM, Vvol. 30
[44]   A new approach to approximate equation-of-motion coupled cluster with triple excitations [J].
Matthews, Devin A. ;
Stanton, John F. .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (12)
[45]   A Quasidegenerate Second-Order Perturbation Theory Approximation to RAS-nSF for Excited States and Strong Correlations [J].
Mayhall, Nicholas J. ;
Goldey, Matthew ;
Head-Gordon, Martin .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (02) :589-599
[46]   Extraction of electronic excited states from the ground-state two-particle reduced density matrix [J].
Mazziotti, DA .
PHYSICAL REVIEW A, 2003, 68 (05) :9
[47]   Approximate solution for electron correlation through the use of Schwinger probes [J].
Mazziotti, DA .
CHEMICAL PHYSICS LETTERS, 1998, 289 (5-6) :419-427
[48]   Quantum computational chemistry [J].
McArdle, Sam ;
Endo, Suguru ;
Aspuru-Guzik, Alan ;
Benjamin, Simon ;
Yuan, Xiao .
REVIEWS OF MODERN PHYSICS, 2020, 92 (01)
[49]   Quantum chemistry as a benchmark for near-term quantum computers [J].
McCaskey, Alexander J. ;
Parks, Zachary P. ;
Jakowski, Jacek ;
Moore, Shirley V. ;
Morris, Titus D. ;
Humble, Travis S. ;
Pooser, Raphael C. .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[50]   OpenFermion: the electronic structure package for quantum computers [J].
McClean, Jarrod R. ;
Rubin, Nicholas C. ;
Sung, Kevin J. ;
Kivlichan, Ian D. ;
Bonet-Monroie, Xavier ;
Cao, Yudong ;
Dai, Chengyu ;
Fried, E. Schuyler ;
Gidney, Craig ;
Gimby, Brendan ;
Gokhale, Pranav ;
Haner, Thomas ;
Hardikar, Tarini ;
Havlicek, Vojtech ;
Higgott, Oscar ;
Huang, Cupjin ;
Izaac, Josh ;
Jiang, Zhang ;
Liu, Xinle ;
McArdle, Sam ;
Neeley, Matthew ;
O'Brien, Thomas ;
O'Gorman, Bryan ;
Ozfidan, Isil ;
Radin, Maxwell D. ;
Romero, Jhonathan ;
Sawaya, Nicolas P. D. ;
Senjean, Bruno ;
Setia, Kanav ;
Sim, Sukin ;
Steiger, Damian S. ;
Steudtner, Mark ;
Sun, Qiming ;
Sun, Wei ;
Wang, Daochen ;
Zhang, Fang ;
Babbush, Ryan .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03)