Method of soil-elastoplastic DEM parameter calibration based on recurrent neural network

被引:28
作者
Long, Sifang [1 ]
Xu, Shaomin [1 ]
Zhang, Yanjun [2 ]
Li, Boliao [1 ]
Sun, Lunqing [1 ]
Wang, Yongwei [1 ]
Wang, Jun [1 ]
机构
[1] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Hangzhou 310058, Peoples R China
[2] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
关键词
Parameter calibration; DEM; Recurrent neural network; Soil-elastoplastic; SIMULATION;
D O I
10.1016/j.powtec.2023.118222
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In order to accurately simulate the elastoplastic macroscopic mechanical behavior of soil, the microscopic me-chanical parameters in the particle contact model must be carefully calibrated. In this paper, the Discreat Element Method (DEM) parameter calibration network is constructed based on a recurrent neural network, and the soil stress-strain training and test dataset are established by DEM simulation. According to the results of the parameter sensitivity analysis of the soil compression simulation test, the evaluation criteria for model prediction accuracy are determined. Furthermore, optimize the model hyperparameters. Based on the optimized model weight and accuracy evaluation index, the difference between the traditional Design of Experiment (DoE) parameter calibration method and the Deep Learning (DL) method is compared. The relationship between simulation efficiency and model prediction accuracy is also analyzed. Finally, the actual soil sample parameters were predicted and verified by simulation. This research can provide a perspective for parameter calibration method.
引用
收藏
页数:12
相关论文
共 31 条
[1]   A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective [J].
Alaoui, A. ;
Lipiec, J. ;
Gerke, H. H. .
SOIL & TILLAGE RESEARCH, 2011, 115 :1-15
[2]   Simulation of plate sinkage in soil using discrete element modelling: Calibration of model parameters and experimental validation [J].
Bahrami, Mostafa ;
Naderi-Boldaji, Mojtaba ;
Ghanbarian, Davoud ;
Ucgul, Mustafa ;
Keller, Thomas .
SOIL & TILLAGE RESEARCH, 2020, 203
[3]   Identification of DEM simulation parameters by Artificial Neural Networks and bulk experiments [J].
Benvenuti, L. ;
Kloss, C. ;
Pirker, S. .
POWDER TECHNOLOGY, 2016, 291 :456-465
[4]  
Boikov A.V., 2018, 12 INT SCI TECHNICAL
[5]   Calibration of the discrete element method [J].
Coetzee, C. J. .
POWDER TECHNOLOGY, 2017, 310 :104-142
[6]   Discrete element parameter calibration and the modelling of dragline bucket filling [J].
Coetzee, C. J. ;
Els, D. N. J. ;
Dymond, G. F. .
JOURNAL OF TERRAMECHANICS, 2010, 47 (01) :33-44
[7]   DEM simulation of stress transmission under agricultural traffic Part 1: Comparison with continuum model and parametric study [J].
De Pue, Jan ;
Cornelis, Wim M. .
SOIL & TILLAGE RESEARCH, 2019, 195
[8]   Calibration of DEM material parameters to simulate stress-strain behaviour of unsaturated soils during uniaxial compression [J].
De Pue, Jan ;
Di Emidio, Gemmina ;
Flores, R. Daniel Verastegui ;
Bezuijen, Adam ;
Cornelis, Wim M. .
SOIL & TILLAGE RESEARCH, 2019, 194
[9]   Estimating DEM microparameters for uniaxial compression simulation with genetic programming [J].
De Simone, Marcelo ;
Souza, Lourdes M. S. ;
Roehl, Deane .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2019, 118 :33-41
[10]   A calibration framework for discrete element model parameters using genetic algorithms [J].
Do, Huy Q. ;
Aragon, Alejandro M. ;
Schott, Dingena L. .
ADVANCED POWDER TECHNOLOGY, 2018, 29 (06) :1393-1403