Painleve-Gullstrand coordinates for Schwarzschild-de Sitter spacetime

被引:3
作者
Volovik, G. E. [1 ]
机构
[1] Aalto Univ, Sch Sci & Technol, Low Temp Lab, POB 15100, FI-00076 Aalto, Finland
基金
欧洲研究理事会;
关键词
Black hole; White hole; Event horizon; de Sitter; BLACK-HOLE; RELATIVITY; MECHANICS; SYSTEMS;
D O I
10.1016/j.aop.2023.169219
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Painleve-Gullstrand coordinates are extended to describe the black hole in the cosmological environment: the Schwarzschild- de Sitter black hole, which has two horizons. The extension is made using the Arnowitt-Deser-Misner formalism. In this extension, which describes the metric in the whole range of radial coordinates 0 < r < infinity, there is the point r = r0 at which the shift function (velocity) changes sign. At this point the observer is at rest, while the observers at r < r0 are free falling to the black hole and the observers at r > r0 are free falling towards the cosmological horizon. The existence of the stationary observer allows to determine the temperature of Hawking radiation, which is in agreement with Bousso and Hawking (1996). It is the red-shifted modification of the con-ventional Hawking temperature determined by the gravity at the horizon. We also consider the Painleve-Gullstrand coordinates and their extension for such configurations as Schwarzschild- de Sitter white hole, where the sign of the shift function is everywhere positive; the black hole in the environment of the contracting de Sitter spacetime, where the sign of the shift function is everywhere negative; and the white hole in the contracting de Sitter spacetime, where the shift velocity changes sign at r = r0.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Logarithmic corrections to the FRW brane cosmology from 5d Schwarzschild-de Sitter black hole
    Nojiri, S
    Odintsov, SD
    Ogushi, S
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (19): : 3395 - 3416
  • [42] Escape, bound and capture geodesics in local static coordinates in Schwarzschild spacetime
    Wang, Yaoguang
    Liu, Xionghui
    Yang, Nan
    Liu, Jiawei
    Jia, Junji
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (02)
  • [43] Interpolating the Schwarzschild and de Sitter metrics
    Halilsoy, M.
    Mazharimousavi, S. Habib
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (02):
  • [44] Holographic entropy on the brane in de Sitter Schwarzschild space
    Ogushi, S
    [J]. MODERN PHYSICS LETTERS A, 2002, 17 (01) : 51 - 58
  • [45] Two regimes of asymptotic fall-off of a massive scalar field in the Schwarzschild - de Sitter spacetime
    Konoplya, R. A.
    [J]. PHYSICAL REVIEW D, 2024, 109 (10)
  • [46] Simulating, Visualizing and Playing with de Sitter and Anti de Sitter Spacetime
    Kopczynski, Eryk
    [J]. COMPUTATIONAL SCIENCE, ICCS 2024, PT I, 2024, 14832 : 136 - 150
  • [47] Global Results for Linear Waves on Expanding Kerr and Schwarzschild de Sitter Cosmologies
    Volker Schlue
    [J]. Communications in Mathematical Physics, 2015, 334 : 977 - 1023
  • [48] Non-minimal Coupling Scalar Field Quasinormal Modes of Schwarzschild-de Sitter Black Hole with a Global Monopole
    Zhou, Ying
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (05) : 1431 - 1439
  • [49] Lamb shift in de Sitter spacetime
    Zhou, Wenting
    Yu, Hongwei
    [J]. PHYSICAL REVIEW D, 2010, 82 (12):
  • [50] Flat foliation of the Schwarzschild-anti-de Sitter metric
    Haidar, Farrukh
    Siddiqui, Azad A.
    [J]. PHYSICA SCRIPTA, 2023, 98 (12)