Structural integrity of a 2.5-MW spar-type floating offshore wind turbine under extreme environmental conditions

被引:1
|
作者
Kim, Hanjong [1 ]
Lee, Jaehoon [2 ]
Han, Changwan [3 ]
Park, Seonghun [1 ]
机构
[1] Pusan Natl Univ, Sch Mech Engn, Busan, South Korea
[2] Korea Marine Equipment Res Inst, Busan, South Korea
[3] Korea Aerosp Ind, Sacheon Si, Gyeongsangnam D, South Korea
关键词
2.5MW spar-type substructure; extreme ocean conditions; floating offshore wind turbine; fluid-structure interaction; structural integrity; SUBSTRUCTURES; DESIGN;
D O I
10.12989/was.2023.37.6.461
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The main objective of this study was to establish design guidelines for three key design variables (spar thickness, spar diameter, and total draft) by examining their impact on the stress distribution and resonant frequency of a 2.5-MW spar-type floating offshore wind turbine substructure under extreme marine conditions, such as during Typhoon Bolaven. The current findings revealed that the substructure experienced maximum stress at wave frequencies of either 0.199 Hz or 0.294 Hz, consistent with previously reported experimental findings. These results indicated that the novel simulation method proposed in this study, which simultaneously combines hydrodynamic diffraction analysis, computational dynamics analysis, and structural analysis, was successfully validated. It also demonstrated that our proposed simulation method precisely quantified the stress distribution of the substructure. The novel findings, which reveal that the maximum stress of the substructure increases with an increase in total draft and a decrease in spar thickness and spar diameter, offer valuable insights for optimizing the design of spar-type floating offshore wind turbine substructures operating in various harsh marine environments.
引用
收藏
页码:461 / 471
页数:11
相关论文
共 50 条
  • [1] Coupled Dynamic Response on a 6 MW Spar-Type Floating Offshore Wind Turbine Under Extreme Conditions
    Yang J.
    He Y.
    Meng L.
    Zhao Y.
    Wu H.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2021, 55 (01): : 21 - 31
  • [2] Structural Modeling and Failure Assessment of Spar-Type Substructure for 5 MW Floating Offshore Wind Turbine under Extreme Conditions in the East Sea
    Ha, Kwangtae
    Kim, Jun-Bae
    Yu, Youngjae
    Seo, Hyoung-Seock
    ENERGIES, 2021, 14 (20)
  • [3] Research on Dynamic Response Characteristics of 6 MW Spar-Type Floating Offshore Wind Turbine
    孟龙
    何炎平
    周涛
    赵永生
    刘亚东
    JournalofShanghaiJiaotongUniversity(Science), 2018, 23 (04) : 505 - 514
  • [4] Structural vibration control of spar-type floating wind turbine
    Jin X.
    Lin Y.
    Xie S.
    He J.
    Wang N.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (01): : 210 - 214
  • [5] Research on Dynamic Response Characteristics of 6MW Spar-Type Floating Offshore Wind Turbine
    Meng L.
    He Y.
    Zhou T.
    Zhao Y.
    Liu Y.
    Journal of Shanghai Jiaotong University (Science), 2018, 23 (4) : 505 - 514
  • [6] Dynamic Response of SPAR-Type Floating Offshore Wind Turbine under Wave Group Scenarios
    Liu, Baolong
    Yu, Jianxing
    ENERGIES, 2022, 15 (13)
  • [7] A Novel Dynamics Analysis Method for Spar-Type Floating Offshore Wind Turbine
    Xin-liang Tian
    Jia-ren Xiao
    Hao-xue Liu
    Bin-rong Wen
    Zhi-ke Peng
    China Ocean Engineering, 2020, 34 : 99 - 109
  • [8] A Novel Dynamics Analysis Method for Spar-Type Floating Offshore Wind Turbine
    Tian, Xin-liang
    Xiao, Jia-ren
    Liu, Hao-xue
    Wen, Bin-rong
    Peng, Zhi-ke
    CHINA OCEAN ENGINEERING, 2020, 34 (01) : 99 - 109
  • [9] A Novel Dynamics Analysis Method for Spar-Type Floating Offshore Wind Turbine
    TIAN Xin-liang
    XIAO Jia-ren
    LIU Hao-xue
    WEN Bin-rong
    PENG Zhi-ke
    ChinaOceanEngineering, 2020, 34 (01) : 99 - 109
  • [10] DYNAMIC RESPONSE OF SPAR-TYPE FLOATING OFFSHORE WIND TURBINE IN FREAK WAVE
    Tang, Yougang
    Li, Yan
    Xie, Peng
    Qu, Xiaoqi
    Wang, Bin
    PROCEEDINGS OF THE ASME 38TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2019, VOL 10, 2019,