A Label Correction Learning Framework for Gully Erosion Extraction Using High-Resolution Remote Sensing Images and Noisy Labels

被引:1
作者
Zhao, Chunhui [1 ]
Shen, Yi [1 ]
Su, Nan [1 ]
Yan, Yiming [1 ]
Feng, Shou [1 ]
Xiang, Wei [2 ,3 ]
Liu, Yong [4 ]
Zhao, Tianhao [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] La Trobe Univ, Sch Comp Engn & Math Sci, Melbourne, Vic 3086, Australia
[3] James Cook Univ, Coll Sci & Engn, Cairns, Qld 4878, Australia
[4] Heilongjiang Prov Hydraul Res Inst, Harbin 150000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gully erosion (GE) extraction; high-resolution remote sensing images; land resource protection; noisy labels; semantic segmentation; BUILDING EXTRACTION; SEGMENTATION;
D O I
10.1109/JSTARS.2023.3338977
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rapid and reliable gully erosion (GE) extraction from high-resolution remote sensing (HRRS) images is crucial for the development of land protection measures. For this task, semantic segmentation methods are widely considered the state-of-the-art solutions. Nevertheless, providing sufficient and clean training labels for segmentation models demands substantial expenses and time investment. In this context, a label correction learning (LCL) framework is proposed to effectively extract GE from HRRS images by leveraging more readily available noisy labels. The core objective of this framework is to suppress the adverse impact of noise within noisy labels on the model performance. To achieve this, we introduce three key components in the framework, including an adaptive correction loss function, a multitree refinement module, and a noise correction module. These components collaborate to rectify noisy labels during training, thereby providing the model with a training set containing less noise. To validate the effectiveness of the LCL framework, three severely eroded regions in Northeast China are selected as study areas and corresponding noisy datasets are generated. Extensive experiments on these datasets demonstrate that our framework can significantly mitigate the negative influence of label noise and ultimately achieve superior GE extraction performance. Moreover, by employing the proposed framework, we generate GE coverage maps for the study areas and obtain measurements of gully area and length that are very close to the true statistics. Such a framework that can effectively learn from noisy labels holds promise as a practical and cost-efficient means to provide reliable data references for land resource protection.
引用
收藏
页码:1638 / 1655
页数:18
相关论文
共 53 条
[1]   SC-RoadDeepNet: A New Shape and Connectivity-Preserving Road Extraction Deep Learning-Based Network From Remote Sensing Data [J].
Abdollahi, Abolfazl ;
Pradhan, Biswajeet ;
Alamri, Abdullah .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[2]   On the evaluation of soil erosion models: Are we doing enough? [J].
Batista, Pedro V. G. ;
Davies, Jessica ;
Silva, Marx L. N. ;
Quinton, John N. .
EARTH-SCIENCE REVIEWS, 2019, 197
[3]   PCL-PTD Net: Parallel Cross-Learning-Based Pixel Transferred Deconvolutional Network for Building Extraction in Dense Building Areas With Shadow [J].
Boonpook, Wuttichai ;
Tan, Yumin ;
Torsri, Kritanai ;
Kamsing, Patcharin ;
Torteeka, Peerapong ;
Nardkulpat, Attawut .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 :773-786
[4]   Soil erosion modelling: A global review and statistical analysis [J].
Borrelli, Pasquale ;
Alewell, Christine ;
Alvarez, Pablo ;
Ayach Anache, Jamil Alexandre ;
Baartman, Jantiene ;
Ballabio, Cristiano ;
Bezak, Nejc ;
Biddoccu, Marcella ;
Cerda, Artemi ;
Chalise, Devraj ;
Chen, Songchao ;
Chen, Walter ;
De Girolamo, Anna Maria ;
Gessesse, Gizaw Desta ;
Deumlich, Detlef ;
Diodato, Nazzareno ;
Efthimiou, Nikolaos ;
Erpul, Gunay ;
Fiener, Peter ;
Freppaz, Michele ;
Gentile, Francesco ;
Gericke, Andreas ;
Haregeweyn, Nigussie ;
Hu, Bifeng ;
Jeanneau, Amelie ;
Kaffas, Konstantinos ;
Kiani-Harchegani, Mahboobeh ;
Lizaga Villuendas, Ivan ;
Li, Changjia ;
Lombardo, Luigi ;
Lopez-Vicente, Manuel ;
Esteban Lucas-Borja, Manuel ;
Marker, Michael ;
Matthews, Francis ;
Miao, Chiyuan ;
Mikos, Matjaz ;
Modugno, Sirio ;
Moeller, Markus ;
Naipal, Victoria ;
Nearing, Mark ;
Owusu, Stephen ;
Panday, Dinesh ;
Patault, Edouard ;
Patriche, Cristian Valeriu ;
Poggio, Laura ;
Portes, Raquel ;
Quijano, Laura ;
Rahdari, Mohammad Reza ;
Renima, Mohammed ;
Ricci, Giovanni Francesco .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 780
[5]   Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network [J].
Cai, Sijing ;
Tian, Yunxian ;
Lui, Harvey ;
Zeng, Haishan ;
Wu, Yi ;
Chen, Guannan .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (06) :1275-1285
[6]   A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution remote sensing images [J].
Cao, Yinxia ;
Huang, Xin .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 :157-176
[7]   A novel weakly supervised semantic segmentation framework to improve the resolution of land cover product [J].
Chen, Yujia ;
Zhang, Guo ;
Cui, Hao ;
Li, Xue ;
Hou, Shasha ;
Ma, Jinhao ;
Li, Zhijiang ;
Li, Haifeng ;
Wang, Huabin .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 :73-92
[8]   Road extraction in remote sensing data: A survey [J].
Chen, Ziyi ;
Deng, Liai ;
Luo, Yuhua ;
Li, Dilong ;
Marcato Junior, Jose ;
Gonsalves, Wesley Nunes ;
Nurunnabi, Abdul Awal Md ;
Li, Jonathan ;
Wang, Cheng ;
Li, Deren .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
[9]   Data Cleansing for Salt Dome Dataset With Noise Robust Network on Segmentation Task [J].
Chung, Youdam ;
Lu, Wenkai ;
Tian, Xingyu .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[10]   Rethinking Panoptic Segmentation in Remote Sensing: A Hybrid Approach Using Semantic Segmentation and Non-Learning Methods [J].
de Carvalho, Osmar L. F. ;
de Carvalho Junior, Osmar A. ;
de Albuquerque, Anesmar O. ;
Santana, Nickolas C. ;
Borges, Dibio L. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19